-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathheat_pump.py
1032 lines (809 loc) · 39.7 KB
/
heat_pump.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Heat pump module
Modelling a heat pump with modelling approaches of
simple, lorentz, generic regression, and standard test regression
"""
import os
import math
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
plt.style.use('ggplot')
plt.rcParams.update({'font.size': 22})
def perf():
input_weather = read_ambient_conditions()
inputs_demands = {'source_temp': [60] * 8760, 'return_temp_DH': [40] * 8760}
inputs = read_heat_pump()
inputs_basics = inputs['heatpump_basics']
modelling_approach = inputs_basics['modelling_approach']
if modelling_approach == 'Simple':
inputs_simple = inputs['heatpump_simple']
myHeatPump = HeatPump(
inputs_basics['heat_pump_type'],
inputs_basics['modelling_approach'],
inputs_basics['capacity'],
inputs_basics['ambient_delta_t'],
inputs_basics['minimum_runtime'],
inputs_basics['minimum_output'],
inputs_basics['data_input'],
inputs_demands['source_temp'],
inputs_demands['return_temp_DH'],
input_weather,
simple_cop=inputs_simple)
return myHeatPump.performance()
elif modelling_approach == 'Lorentz':
inputs_lorentz = inputs['heatpump_lorentz']
myHeatPump = HeatPump(
inputs_basics['heat_pump_type'],
inputs_basics['modelling_approach'],
inputs_basics['capacity'],
inputs_basics['ambient_delta_t'],
inputs_basics['minimum_runtime'],
inputs_basics['minimum_output'],
inputs_basics['data_input'],
inputs_demands['source_temp'],
inputs_demands['return_temp_DH'],
input_weather,
lorentz_inputs=inputs_lorentz)
return myHeatPump.performance()
elif modelling_approach == 'Generic regression':
myHeatPump = HeatPump(
inputs_basics['heat_pump_type'],
inputs_basics['modelling_approach'],
inputs_basics['capacity'],
inputs_basics['ambient_delta_t'],
inputs_basics['minimum_runtime'],
inputs_basics['minimum_output'],
inputs_basics['data_input'],
inputs_demands['source_temp'],
inputs_demands['return_temp_DH'],
input_weather)
return myHeatPump.performance()
elif modelling_approach == 'Standard test regression':
inputs_standard_regression = inputs['heatpump_standard_regression']
myHeatPump = HeatPump(
inputs_basics['heat_pump_type'],
inputs_basics['modelling_approach'],
inputs_basics['capacity'],
inputs_basics['ambient_delta_t'],
inputs_basics['minimum_runtime'],
inputs_basics['minimum_output'],
inputs_basics['data_input'],
inputs_demands['source_temp'],
inputs_demands['return_temp_DH'],
input_weather,
standard_test_regression_inputs=inputs_standard_regression)
return myHeatPump.performance()
def read_heat_pump():
df = pd.read_excel('heat_pump_inputs.xlsx', sheet_name='Heat pump')
hp_basics = df.iloc[1:8]
hp_basics = hp_basics.transpose()
hp_basics = hp_basics.reset_index(drop=True)
hp_basics = hp_basics.drop(
[0, 1, 2, 4, 5, 6, 7, 8, 9, 10])
hp_basics = hp_basics.rename(columns={1: 'heat_pump_type',
2: 'modelling_approach',
3: 'capacity',
4: 'ambient_delta_t',
5: 'minimum_runtime',
6: 'minimum_output',
7: 'data_input'})
hp_basics = hp_basics.reset_index(drop=True)
simple = df.iloc[9:11]
hp_simple = simple['Unnamed: 3'][10]
lorentz = df.iloc[13:19]
lorentz = lorentz.transpose()
lorentz = lorentz.reset_index(drop=True)
lorentz = lorentz.drop(
[0, 1, 2, 4, 5, 6, 7, 8, 9, 10])
lorentz = lorentz.rename(columns={13: 'COP',
14: 'flow_temp',
15: 'return_temp',
16: 'ambient_temp_in',
17: 'ambient_temp_out',
18: 'elec_capacity'})
lorentz = lorentz.reset_index(drop=True)
regression_temp1 = df.iloc[21:25]
regression_temp1 = regression_temp1.transpose()
regression_temp1 = regression_temp1.reset_index(drop=True)
regression_temp1 = regression_temp1.drop(
[0, 1, 2, 4, 5, 6, 7, 8, 9, 10])
regression_temp1 = regression_temp1.drop(columns=[23, 24])
regression_temp1 = regression_temp1.rename(columns={21: 'flow_temp',
22: 'return_temp'})
regression_temp1 = regression_temp1.reset_index(drop=True)
regression_temp2 = df.iloc[21:25]
regression_temp2 = regression_temp2.transpose()
regression_temp2 = regression_temp2.reset_index(drop=True)
regression_temp2 = regression_temp2.drop(
[0, 1, 2, 3, 4, 5, 6, 8, 9, 10])
regression_temp2 = regression_temp2.drop(columns=[23, 24])
regression_temp2 = regression_temp2.rename(columns={21: 'flow_temp',
22: 'return_temp'})
regression_temp2 = regression_temp2.reset_index(drop=True)
regression_temp3 = df.iloc[34:36]
regression_temp3 = regression_temp3.transpose()
regression_temp3 = regression_temp3.reset_index(drop=True)
regression_temp3 = regression_temp3.drop(
[0, 1, 2, 4, 5, 6, 7, 8, 9, 10])
regression_temp3 = regression_temp3.rename(columns={34: 'flow_temp',
35: 'return_temp'})
regression_temp3 = regression_temp3.reset_index(drop=True)
regression_temp4 = df.iloc[34:36]
regression_temp4 = regression_temp4.transpose()
regression_temp4 = regression_temp4.reset_index(drop=True)
regression_temp4 = regression_temp4.drop(
[0, 1, 2, 3, 4, 5, 6, 8, 9, 10])
regression_temp4 = regression_temp4.rename(columns={34: 'flow_temp',
35: 'return_temp'})
regression_temp4 = regression_temp4.reset_index(drop=True)
regression1 = df.iloc[23:33]
regression1 = regression1.drop(columns={'Unnamed: 0', 'Unnamed: 1',
'Unnamed: 6', 'Unnamed: 7',
'Unnamed: 8', 'Unnamed: 9',
'Unnamed: 10'})
regression1 = regression1.rename(columns={'Unnamed: 2': 'ambient_temp',
'Unnamed: 3': 'COSP',
'Unnamed: 4': 'duty',
'Unnamed: 5': 'capacity_percentage'})
regression1 = regression1.drop([23, 24])
regression1 = regression1.reset_index(drop=True)
regression2 = df.iloc[23:33]
regression2 = regression2.drop(columns={'Unnamed: 0', 'Unnamed: 1',
'Unnamed: 2', 'Unnamed: 3',
'Unnamed: 4', 'Unnamed: 5',
'Unnamed: 10'})
regression2 = regression2.rename(columns={'Unnamed: 6': 'ambient_temp',
'Unnamed: 7': 'COSP',
'Unnamed: 8': 'duty',
'Unnamed: 9': 'capacity_percentage'})
regression2 = regression2.drop([23, 24])
regression2 = regression2.reset_index(drop=True)
regression3 = df.iloc[39:46]
regression3 = regression3.drop(columns={'Unnamed: 0', 'Unnamed: 1',
'Unnamed: 6', 'Unnamed: 7',
'Unnamed: 8', 'Unnamed: 9',
'Unnamed: 10'})
regression3 = regression3.rename(columns={'Unnamed: 2': 'ambient_temp',
'Unnamed: 3': 'COSP',
'Unnamed: 4': 'duty',
'Unnamed: 5': 'capacity_percentage'})
regression3 = regression3.reset_index(drop=True)
regression4 = df.iloc[39:46]
regression4 = regression4.drop(columns={'Unnamed: 0', 'Unnamed: 1',
'Unnamed: 2', 'Unnamed: 3',
'Unnamed: 4', 'Unnamed: 5',
'Unnamed: 10'})
regression4 = regression4.rename(columns={'Unnamed: 6': 'ambient_temp',
'Unnamed: 7': 'COSP',
'Unnamed: 8': 'duty',
'Unnamed: 9': 'capacity_percentage'})
regression4 = regression4.reset_index(drop=True)
return_dic = {'hp_basics': hp_basics, 'hp_simple': hp_simple, 'lorentz': lorentz,
'regression_temp1': regression_temp1, 'regression_temp2': regression_temp2,
'regression_temp3': regression_temp3, 'regression_temp4': regression_temp4,
'regression1': regression1, 'regression2': regression2,
'regression3': regression3, 'regression4': regression4}
hp = return_dic['hp_basics']
# the inputs which specify the heat pump to be modelled
hp_type = hp['heat_pump_type'][0]
capacity = hp['capacity'][0]
modelling_approach = hp['modelling_approach'][0]
ambient_delta_t = hp['ambient_delta_t'][0]
minimum_runtime = hp['minimum_runtime'][0]
data_input = hp['data_input'][0]
minimum_output = hp['minimum_output'][0]
heatpump_basics = {'heat_pump_type': hp_type,
'capacity': capacity,
'modelling_approach': modelling_approach,
'ambient_delta_t': ambient_delta_t,
'minimum_runtime': minimum_runtime,
'data_input': data_input,
'minimum_output': minimum_output}
heatpump_simple = return_dic['hp_simple']
lorentz = return_dic['lorentz']
cop = lorentz['COP'][0]
flow_temp_spec = lorentz['flow_temp'][0]
return_temp_spec = lorentz['return_temp'][0]
temp_ambient_in_spec = lorentz['ambient_temp_in'][0]
temp_ambient_out_spec = lorentz['ambient_temp_out'][0]
elec_capacity = lorentz['elec_capacity'][0]
heatpump_lorentz = {'cop': cop,
'flow_temp_spec': flow_temp_spec,
'return_temp_spec': return_temp_spec,
'temp_ambient_in_spec': temp_ambient_in_spec,
'temp_ambient_out_spec': temp_ambient_out_spec,
'elec_capacity': elec_capacity}
regression1 = return_dic['regression1']
regression_temp1 = return_dic['regression_temp1']
dic = {'flow_temp': [regression_temp1['flow_temp'][0],
regression_temp1['flow_temp'][0],
regression_temp1['flow_temp'][0],
regression_temp1['flow_temp'][0],
regression_temp1['flow_temp'][0],
regression_temp1['flow_temp'][0],
regression_temp1['flow_temp'][0],
regression_temp1['flow_temp'][0]]}
df = pd.DataFrame(data=dic)
data1 = pd.concat([regression1, df], axis=1)
regression2 = return_dic['regression2']
regression_temp2 = return_dic['regression_temp2']
dic2 = {'flow_temp': [regression_temp2['flow_temp'][0],
regression_temp2['flow_temp'][0],
regression_temp2['flow_temp'][0],
regression_temp2['flow_temp'][0],
regression_temp2['flow_temp'][0],
regression_temp2['flow_temp'][0],
regression_temp2['flow_temp'][0],
regression_temp2['flow_temp'][0]]}
df2 = pd.DataFrame(data=dic2)
data2 = pd.concat([regression2, df2], axis=1)
regression3 = return_dic['regression3']
regression_temp3 = return_dic['regression_temp3']
dic3 = {'flow_temp': [regression_temp3['flow_temp'][0],
regression_temp3['flow_temp'][0],
regression_temp3['flow_temp'][0],
regression_temp3['flow_temp'][0],
regression_temp3['flow_temp'][0],
regression_temp3['flow_temp'][0],
regression_temp3['flow_temp'][0],
regression_temp3['flow_temp'][0]]}
df3 = pd.DataFrame(data=dic3)
data3 = pd.concat([regression3, df3], axis=1)
regression4 = return_dic['regression4']
regression_temp4 = return_dic['regression_temp4']
dic4 = {'flow_temp': [regression_temp4['flow_temp'][0],
regression_temp4['flow_temp'][0],
regression_temp4['flow_temp'][0],
regression_temp4['flow_temp'][0],
regression_temp4['flow_temp'][0],
regression_temp4['flow_temp'][0],
regression_temp4['flow_temp'][0],
regression_temp4['flow_temp'][0]]}
df4 = pd.DataFrame(data=dic4)
data4 = pd.concat([regression4, df4], axis=1)
regression_data = data1.append([data2, data3, data4])
regression_data = regression_data.dropna()
regression_data = regression_data.reset_index(drop=True)
# print regression_data, 'rd'
# note that ambient temp is column1 and flow is column 2
X = regression_data.drop(
columns=['duty', 'capacity_percentage', 'COSP'])
Y_COSP = regression_data.drop(
columns=['duty', 'capacity_percentage', 'flow_temp', 'ambient_temp'])
Y_duty = regression_data.drop(
columns=['COSP', 'capacity_percentage', 'flow_temp', 'ambient_temp'])
heatpump_standard_regression = {'data_x': X,
'data_COSP': Y_COSP,
'data_duty': Y_duty}
return_dic = {'heatpump_basics': heatpump_basics, 'heatpump_simple': heatpump_simple,
'heatpump_lorentz': heatpump_lorentz, 'heatpump_standard_regression': heatpump_standard_regression}
return return_dic
def read_ambient_conditions():
df = pd.read_excel('heat_pump_inputs.xlsx', sheet_name='Ambient')[['ambient_temp']]
return df
class HeatPump(object):
def __init__(self, hp_type, modelling_approach,
capacity, ambient_delta_t,
minimum_runtime, minimum_output, data_input,
flow_temp_source, return_temp,
hp_ambient_temp,
simple_cop=None,
lorentz_inputs=None,
generic_regression_inputs=None,
standard_test_regression_inputs=None
):
"""heat pump class object
Arguments:
hp_type {string} -- type of heatpump, ASHP, WSHP, GSHP
modelling_approach {str} -- simple, lorentz,
generic, standard regression
capacity {float} -- thermal capacity of heat pump
ambient_delta_t {int} -- drop in ambient source temperature
from inlet to outlet
minimum_runtime {string} -- fixed or variable speed compressor
data_input {str} -- type of data input, peak or integrated
flow_temp {dataframe} -- required temperatures out of HP
return_temp {dataframe} -- inlet temp to HP
weather {dic} -- ambient conditions of heat source
Keyword Arguments: all these are for inputs, bar simple,
for different modelling approaches
simple_cop {float} -- only COP for simple (default: {None})
lorentz_inputs {dic} -- (default: {None})
generic_regression_inputs {dic} -- (default: {None})
standard_test_regression_inputs {dic} -- (default: {None})
"""
self.hp_type = hp_type
self.modelling_approach = modelling_approach
self.capacity = capacity
self.ambient_delta_t = ambient_delta_t
self.minimum_runtime = minimum_runtime
self.minimum_output = minimum_output
self.data_input = data_input
self.flow_temp_source = flow_temp_source
self.return_temp = return_temp
self.hp_ambient_temp = hp_ambient_temp
self.simple_cop = simple_cop
self.lorentz_inputs = lorentz_inputs
self.generic_regression_inputs = generic_regression_inputs
self.standard_test_regression_inputs = standard_test_regression_inputs
def heat_resource(self):
"""accessing the heat resource
takes the hp resource from the weather class
Returns:
dataframe -- ambient temperature for heat source of heat pump
"""
return self.hp_ambient_temp
# HP_resource = weather.Weather(
# air_temperature=self.hp_ambient_temp['air_temperature'],
# water_temperature=self.hp_ambient_temp['water_temperature']).heatpump()
# if self.hp_type == 'ASHP':
# HP_resource = HP_resource.rename(
# columns={'air_temperature': 'ambient_temp'})
# return HP_resource[['ambient_temp']]
# elif self.hp_type == 'WSHP':
# HP_resource = HP_resource.rename(
# columns={'water_temperature': 'ambient_temp'})
# return HP_resource[['ambient_temp']]
# else:
# print('ERROR invalid heat pump type')
def performance(self):
"""performance over year of heat pump
input a timestep from which gathers inputs
a method for calculating the heat pump performance (cop and duty)
for a timetsp
outputs are dict containing
Returns:
dic -- cop and duty for each hour timestep in year
"""
if self.capacity == 0:
performance = []
for timesteps in range(8760):
# cop needs to be low to not break the mpc solver
# duty being zero means it won't choose it anyway
p = {'cop': 0.5, 'duty': 0}
performance.append(p)
return performance
ambient_temp = self.heat_resource()['ambient_temp']
if self.modelling_approach == 'Simple':
cop_x = self.simple_cop
duty_x = self.capacity
elif self.modelling_approach == 'Lorentz':
myLorentz = Lorentz(self.lorentz_inputs['cop'],
self.lorentz_inputs['flow_temp_spec'],
self.lorentz_inputs['return_temp_spec'],
self.lorentz_inputs['temp_ambient_in_spec'],
self.lorentz_inputs['temp_ambient_out_spec'],
self.lorentz_inputs['elec_capacity'])
hp_eff = myLorentz.hp_eff()
elif self.modelling_approach == 'Generic regression':
myGenericRegression = GenericRegression()
duty_x = self.capacity
elif self.modelling_approach == 'Standard test regression':
myStandardRegression = StandardTestRegression(
self.standard_test_regression_inputs['data_x'],
self.standard_test_regression_inputs['data_COSP'],
self.standard_test_regression_inputs['data_duty'])
models = myStandardRegression.train()
COP_model = models['COP_model']
duty_model = models['duty_model']
performance = []
for timestep in range(8760):
if self.modelling_approach == 'Simple':
cop = cop_x
hp_duty = duty_x
elif self.modelling_approach == 'Lorentz':
ambient_return = ambient_temp[timestep] - self.ambient_delta_t
cop = myLorentz.calc_cop(hp_eff,
self.flow_temp_source[timestep],
self.return_temp[timestep],
ambient_temp[timestep],
ambient_return)
hp_duty = myLorentz.calc_duty(self.capacity)
elif self.modelling_approach == 'Generic regression':
if self.hp_type == 'ASHP':
cop = myGenericRegression.ASHP_cop(
self.flow_temp_source[timestep],
ambient_temp[timestep])
elif self.hp_type == 'GSHP' or self.hp_type == 'WSHP':
cop = myGenericRegression.GSHP_cop(
self.flow_temp_source[timestep],
ambient_temp[timestep])
# account for defrosting below 5 drg
if ambient_temp[timestep] <= 5:
cop = 0.9 * cop
hp_duty = duty_x
elif self.modelling_approach == 'Standard test regression':
hp_duty = myStandardRegression.predict_duty(
duty_model,
ambient_temp[timestep],
self.flow_temp_source[timestep])
# 15% reduction in performance if
# data not done to standards
if self.data_input == 'Integrated performance' or ambient_temp[timestep] > 5:
cop = myStandardRegression.predict_COP(
COP_model,
ambient_temp[timestep],
self.flow_temp_source[timestep])
elif self.data_input == 'Peak performance':
if self.hp_type == 'ASHP':
if ambient_temp[timestep] <= 5:
cop = 0.9 * myStandardRegression.predict_COP(
COP_model,
ambient_temp[timestep],
self.flow_temp_source[timestep])
d = {'cop': cop, 'duty': hp_duty}
performance.append(d)
return performance
def elec_usage(self, demand, hp_performance):
"""electricity usage of hp for timestep given a thermal demand
calculates the electrical usage of the heat pump given a heat demand
outputs a dataframe of heat demand, heat pump heat demand,
heat pump elec demand, cop, duty, and leftover
(only non-zero for fixed speed HP)
Arguments:
timestep {int} -- timestep to be calculated
demand {float} -- thermal demand to be met by heat pump
hp_performance {dic} -- dic containing the cop and duty
for timesteps over year
Returns:
dic -- heat demand to be met, cop, duty,
heat demand met by hp, electricity usage of heat pump
"""
if self.capacity == 0:
return {'hp_demand': 0.0, 'hp_elec': 0.0}
cop = hp_performance['cop']
duty = hp_performance['duty']
max_elec_usage = demand / cop
max_elec_cap = duty / cop
hp_elec = min(max_elec_usage, max_elec_cap)
hp_demand = hp_elec * cop
d = {'hp_demand': hp_demand,
'hp_elec': hp_elec}
return d
def thermal_output(self, elec_supply,
hp_performance, heat_demand):
"""thermal output from a given electricity supply
Arguments:
timestep {int} -- timestep to be modelled
elec_supply {float} -- electricity supply used by heat pump
hp_performance {dic} -- dic containing the cop and duty
for timesteps over year
heat_demand {float} -- heat demand to be met of timestep
Returns:
dic -- max_thermal_output, heat demand met by hp,
electricity usage of heat pump
"""
if self.capacity == 0:
return {'hp_demand': 0.0, 'hp_elec': 0.0}
cop = hp_performance['cop']
duty = hp_performance['duty']
# maximum thermal output given elec supply
max_thermal_output = elec_supply * cop
# demand met by hp is min of three arguments
hp_demand = min(max_thermal_output, heat_demand, duty)
hp_elec = hp_demand / cop
d = {'hp_demand': hp_demand,
'hp_elec': hp_elec}
return d
class Lorentz(object):
def __init__(self, cop, flow_temp_spec, return_temp_spec,
ambient_temp_in_spec, ambient_temp_out_spec,
elec_capacity):
"""lorentz calculations and attributes
based on EnergyPRO method
Arguments:
cop {float} -- cop at specified conditions
flow_temp_spec {float} -- temperature from HP spec
return_temp_spec {float} -- tempature to HP spec
ambient_temp_in_spec {float} -- specificed
ambient_temp_out_spec {float} -- spec
elec_capacity {float} -- absolute
"""
self.cop = cop
self.flow_temp_spec = flow_temp_spec
self.return_temp_spec = return_temp_spec
self.ambient_temp_in_spec = ambient_temp_in_spec
self.ambient_temp_out_spec = ambient_temp_out_spec
self.elec_capacity = elec_capacity
def hp_eff(self):
"""heat pump efficiency which is static
# calcultaions of the lorentz model. starting with the mean temps fo
# for the temp flow and return of heat pump, t high mean
# and the ambient in and out temps, t low mean
Returns:
float -- efficiency of the heat pump
"""
t_high_mean = ((self.flow_temp_spec - self.return_temp_spec) /
(math.log((self.flow_temp_spec + 273.15) /
(self.return_temp_spec + 273.15))))
t_low_mean = (
(self.ambient_temp_in_spec - self.ambient_temp_out_spec) /
(math.log((self.ambient_temp_in_spec + 273.15) /
(self.ambient_temp_out_spec + 273.15))))
# lorentz cop is the highest theoretical cop
cop_lorentz = t_high_mean / (t_high_mean - t_low_mean)
# this gives the heat pump efficiency using the stated cop
# the lorentz cop is calcualted for each timestep
# then this is multiplied by the heat pump
# efficiency to give actual cop
hp_eff = self.cop / cop_lorentz
return hp_eff
def calc_cop(self, hp_eff, flow_temp, return_temp,
ambient_temp_in, ambient_temp_out):
"""cop for timestep
calculates the cop based upon actual flow/retur and ambient
uses heat pump efficiency from before
Arguments:
hp_eff {float} -- heat pump efficiency
flow_temp {float} -- flow temperature from heat pump
return_temp {float} -- temperature returning to heat pump
ambient_temp_in {float} -- real-time
ambient_temp_out {float} -- real-time
Returns:
float -- cop for timestep
"""
t_high_mean = ((flow_temp - return_temp) /
(math.log((flow_temp + 273.15) /
(return_temp + 273.15))))
t_low_mean = ((ambient_temp_in - ambient_temp_out) /
(math.log((ambient_temp_in + 273.15) /
(ambient_temp_out + 273.15))))
cop_lorentz = t_high_mean / (t_high_mean - t_low_mean)
cop = hp_eff * cop_lorentz
return cop
def calc_duty(self, capacity):
"""duty for timestep
calculates duty for timestep, ensures this is not exceeded
Arguments:
capacity {float} -- electrical capacity of heat pump
Returns:
float -- duty is the thermal output of the heat pump
"""
duty_max = self.cop * self.elec_capacity
if duty_max >= capacity:
duty = capacity
elif duty_max < capacity:
duty = duty_max
return duty
class GenericRegression(object):
"""uses generic regression analysis to predict performance
see Staffel paper on review of domestic heat pumps for coefficients
"""
def ASHP_cop(self, flow_temp, ambient_temp):
cop = (6.81 -
0.121 * (flow_temp - ambient_temp) +
0.00063 * (flow_temp - ambient_temp) ** 2
)
return cop
def ASHP_duty(self, flow_temp, ambient_temp):
duty = (5.80 +
0.21 * (ambient_temp)
)
return duty
def GSHP_cop(self, flow_temp, ambient_temp):
cop = (8.77 -
0.15 * (flow_temp - ambient_temp) +
0.000734 * (flow_temp - ambient_temp) ** 2
)
return cop
def GSHP_duty(self, flow_temp, ambient_temp):
duty = (9.37 +
0.30 * ambient_temp
)
return duty
def plot_cop(self):
x_ambient = np.linspace(-5, 15, num=100)
cop_55 = []
for z in range(len(x_ambient)):
c = self.ASHP_cop(55, x_ambient[z])
if x_ambient[z] <= 5:
c = 0.9 * c
cop_55.append(c)
cop_45 = []
for z in range(len(x_ambient)):
c = self.ASHP_cop(45, x_ambient[z])
if x_ambient[z] <= 5:
c = 0.9 * c
cop_45.append(c)
plt.plot(x_ambient, cop_45, LineWidth=2)
plt.plot(x_ambient, cop_55, LineWidth=2)
plt.legend(['Flow T 45', 'FLow T 55'], loc='best')
plt.ylabel('COP')
plt.xlabel('Ambient temperature')
plt.show()
class StandardTestRegression(object):
def __init__(self, data_x, data_COSP,
data_duty, degree=2):
"""regression analysis based on standard test condition data
trains a model
predicts cop and duty
Arguments:
data_x {dataframe} -- with flow temps and ambient temps
data_COSP {dataframe} -- with cosp data for different data_X
data_duty {dataframe} -- with duty data for different data_X
Keyword Arguments:
degree {number} -- polynomial number (default: {2})
"""
self.data_x = data_x
self.data_COSP = data_COSP
self.data_duty = data_duty
self.degree = degree
def train(self):
"""training model
"""
poly = PolynomialFeatures(degree=self.degree, include_bias=False)
X_new = poly.fit_transform(self.data_x)
Y_COSP_new = poly.fit_transform(self.data_COSP)
Y_duty_new = poly.fit_transform(self.data_duty)
model_cop = LinearRegression()
model_cop.fit(X_new, Y_COSP_new)
model_duty = LinearRegression()
model_duty.fit(X_new, Y_duty_new)
return {'COP_model': model_cop, 'duty_model': model_duty}
def predict_COP(self, model, ambient_temp, flow_temp):
"""predicts COP from model
Arguments:
model {dic} -- cop and duty models in dic
ambient_temp {float} --
flow_temp {float} --
Returns:
float -- predicted COP
"""
x_pred = np.array([ambient_temp, flow_temp]).reshape(1, -1)
poly = PolynomialFeatures(degree=2, include_bias=False)
x_pred_new = poly.fit_transform(x_pred)
pred_cop = model.predict(x_pred_new)
return float(pred_cop[:, 0])
def predict_duty(self, model, ambient_temp, flow_temp):
"""predicts duty from regression model
Arguments:
model {dic} -- cop and duty models in dic
ambient_temp {float} --
flow_temp {float} --
Returns:
float -- predicted COP
"""
x_pred = np.array([ambient_temp, flow_temp]).reshape(1, -1)
poly = PolynomialFeatures(degree=2, include_bias=False)
x_pred_new = poly.fit_transform(x_pred)
pred_duty = model.predict(x_pred_new)
return float(pred_duty[:, 0])
def graphs(self):
"""OLD testing of how to do regression analysis
includes input method, regression, graphing
"""
path = t.inputs_path()
file1 = os.path.join(path['folder_path'], "regression1.pkl")
regression1 = pd.read_pickle(file1)
path = t.inputs_path()
file1a = os.path.join(path['folder_path'], "regression_temp1.pkl")
regression_temp1 = pd.read_pickle(file1a)
dic = {'flow_temp': [regression_temp1['flow_temp'][0],
regression_temp1['flow_temp'][0],
regression_temp1['flow_temp'][0],
regression_temp1['flow_temp'][0],
regression_temp1['flow_temp'][0],
regression_temp1['flow_temp'][0],
regression_temp1['flow_temp'][0],
regression_temp1['flow_temp'][0]]}
df = pd.DataFrame(data=dic)
data1 = pd.concat([regression1, df], axis=1)
path = t.inputs_path()
file2 = os.path.join(path['folder_path'], "regression2.pkl")
regression2 = pd.read_pickle(file2)
path = t.inputs_path()
file2a = os.path.join(path['folder_path'], "regression_temp2.pkl")
regression_temp2 = pd.read_pickle(file2a)
dic2 ={'flow_temp': [regression_temp2['flow_temp'][0],
regression_temp2['flow_temp'][0],
regression_temp2['flow_temp'][0],
regression_temp2['flow_temp'][0],
regression_temp2['flow_temp'][0],
regression_temp2['flow_temp'][0],
regression_temp2['flow_temp'][0],
regression_temp2['flow_temp'][0]]}
df2 = pd.DataFrame(data=dic2)
data2 = pd.concat([regression2, df2], axis=1)
path = t.inputs_path()
file3 = os.path.join(path['folder_path'], "regression3.pkl")
regression3 = pd.read_pickle(file3)
path = t.inputs_path()
file3a = os.path.join(path['folder_path'], "regression_temp3.pkl")
regression_temp3 = pd.read_pickle(file3a)
dic3 ={'flow_temp': [regression_temp3['flow_temp'][0],
regression_temp3['flow_temp'][0],
regression_temp3['flow_temp'][0],
regression_temp3['flow_temp'][0],
regression_temp3['flow_temp'][0],
regression_temp3['flow_temp'][0],
regression_temp3['flow_temp'][0],
regression_temp3['flow_temp'][0]]}
df3 = pd.DataFrame(data=dic3)
data3 = pd.concat([regression3, df3], axis=1)
path = t.inputs_path()
file4 = os.path.join(path['folder_path'], "regression4.pkl")
regression4 = pd.read_pickle(file4)
path = t.inputs_path()
file4a = os.path.join(path['folder_path'], "regression_temp4.pkl")
regression_temp4 = pd.read_pickle(file4a)
dic4 ={'flow_temp': [regression_temp4['flow_temp'][0],
regression_temp4['flow_temp'][0],
regression_temp4['flow_temp'][0],
regression_temp4['flow_temp'][0],
regression_temp4['flow_temp'][0],
regression_temp4['flow_temp'][0],
regression_temp4['flow_temp'][0],
regression_temp4['flow_temp'][0]]}
df4 = pd.DataFrame(data=dic4)
data4 = pd.concat([regression4, df4], axis=1)
regression_data = data1.append([data2, data3, data4])
regression_data = regression_data.dropna()
regression_data = regression_data.reset_index(drop=True)
#note that ambient temp is column1 and flow_temp is column 2
X = regression_data.drop(columns=['duty', 'capacity_percentage', 'COSP'])
Y_COSP = regression_data.drop(columns=['duty', 'capacity_percentage', 'flow_temp', 'ambient_temp'])
Y_duty = regression_data.drop(columns=['COSP', 'capacity_percentage', 'flow_temp', 'ambient_temp'])
poly = PolynomialFeatures(degree=2, include_bias=False)
X_new = poly.fit_transform(X)
Y_COSP_new = poly.fit_transform(Y_COSP)
model_cop = LinearRegression()
model_cop.fit(X_new, Y_COSP_new)
model_duty = LinearRegression()
model_duty.fit(X_new, Y_duty)
x_ambient = np.linspace(-20,20,num=100)
df1 = pd.DataFrame(data=x_ambient)
x_flow_temp = np.array([50, 55, 60, 65, 70, 75, 80])
df2 = pd.DataFrame(data=x_flow_temp)
f_t = []
am = []
for x in range(0, len(x_flow_temp)):
for y in range(0, len(x_ambient)):
f_t.append(x_flow_temp[x])
am.append(x_ambient[y])
df3 = pd.DataFrame(data=f_t)
df3 = df3.rename(columns= {0:'flow_temp'})
df4 = pd.DataFrame(data=am)
df4 = df4.rename(columns= {0:'ambient_temp'})
x_test = pd.concat([df4, df3], axis=1)
x_test_new = poly.fit_transform(x_test)
pred_cop = model_cop.predict(x_test_new)
pred_duty = model_duty.predict(x_test_new)
fileout = os.path.join(os.path.dirname(__file__), '..', 'outputs', 'heatpump', 'regression_analysis.pdf')
pp = PdfPages(fileout)
dfs = []
for x in range(0, len(df2)):
y1 = x * len(df1)
y2 = (x+1) * len(df1)
dfs.append(pred_cop[y1:y2])
fig, ax = plt.subplots()
for x in range(0, len(df2)):