forked from wiz21b/TechnoInfoCom
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp2_main.py
470 lines (353 loc) · 17.5 KB
/
p2_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import sys
import math
from io import StringIO
from collections import Counter
from contextlib import redirect_stdout
import numpy as np
import matplotlib.pyplot as plt
try:
from bitarray import bitarray
except ModuleNotFoundError as ex:
print("Run pip install bitarray !")
exit()
from p2_LZ77 import LZ77_encoder, LZ77_decoder, \
compute_compression_rate_for_LZ77, lz77_cached_compression
from p2_online_lz import online_lz_compress, online_lz_decompress, \
code_ascii_char, decode_ascii_char, code_binary_char, decode_binary_char
from p2_huffman import build_huffman_tree, build_codebooks, encode, decode, \
compute_leaves_codes, node_to_neato, decode_one_symbol
from p2_utils import bits_to_represent, compress_counts, decompress_counts
INPUT_FILE = "genome.txt"
CODON_LEN = 3
GENOME_TEXT = "".join(np.genfromtxt(INPUT_FILE, dtype='str'))
def entropy(a):
s = sum(a)
h = 0
for x in a:
p = x/s
h += p*math.log2(p)
return - h
# #ABABAC -> A,B,C ou AB AC
# print(entropy([3,2,1]) / math.log2(3))
# print(entropy([2,1]) / math.log2(2))
""" Q1 Implement a function that returns a binary Huffman code for a
given probability distribution. Give the main steps of your
implementation. Explain how to extend your function to generate a
Huffman code of any alphabet size. Verify your code on Exercise 7 of
the second list of exercises, and report the output of your code for
this example. """
ex7_freq = [0.05, 0.10, 0.15, 0.15, 0.2, 0.35]
symbols = [f"{i}" for i in range(len(ex7_freq))]
print(f"Q1: {dict(zip(symbols, ex7_freq))}")
top_node = build_huffman_tree(dict(zip(symbols, ex7_freq)))
leaves = compute_leaves_codes(top_node)
print(f"Q1: {[str(l) for l in leaves]}")
node_to_neato("graph.dot", top_node, leaves)
""" Q2. Given a sequence of symbols, implement a function that returns
a dictionary and the encoded sequence using the on-line Lempel-Ziv
algorithm (see State of the art in data compression, slide
50/53). Reproduce and report the example given in the course."""
slide_50 = "1 0 11 01 010 00 10".replace(" ", "")
tuples, compressed, prefixes = online_lz_compress(StringIO(slide_50), code_binary_char, tuples_out=True)
assert compressed == "1 00 011 101 1000 0100 0010".replace(" ", "")
assert online_lz_decompress(compressed, decode_binary_char) == slide_50
print()
print(f"Q2: (Prefixes -> Addresses) dictionary : {prefixes}")
print(f"Q2: (addr, bit) : {tuples}")
print(f"Q2: U: {compressed}")
""" Q4. Implement a function that returns the encoded sequence using the
LZ77 algorithm as described by Algorithm 1 given an input string
and a sliding window size l. Reproduce the example given in Figure
2 with l = 7."""
S_FIGURE_2 = "abracadabrad"
print()
print(f"Q4: Original string : {S_FIGURE_2}")
print(f"Q4: encoded string : {LZ77_encoder(S_FIGURE_2, 7)}")
""" Q5.
A/ Estimate the marginal probability distribution of all codons from
the given genome,
B/ and determine the corresponding binary Huffman code and the encoded
genome. Give the total length of the encoded genome and the
compression rate. """
def codons_iterator(genome):
for i in range(0, len(genome), CODON_LEN):
yield genome[i:i+CODON_LEN]
codons_cnt = Counter(codons_iterator(GENOME_TEXT))
CODONS = sorted(codons_cnt.keys())
# B/ Huffman tree
top_node = build_huffman_tree(codons_cnt)
code_map, decode_map = build_codebooks(top_node)
compressed = encode(codons_iterator(GENOME_TEXT), code_map)
# Validate that compression works by decompressing
assert GENOME_TEXT == "".join(decode(
compressed, decode_map)), "Decompressed data is not the same as compressed data"
ratio = (len(GENOME_TEXT)*8) / len(compressed)
print()
print(f"Q5: Genome size = {len(GENOME_TEXT)*8} bits; Compressed size = {len(compressed)} bits; ratio={ratio:.2f}")
# A/ Marginal probabilities
marginal_probabilities = dict()
f = sum(codons_cnt.values())
for key, value in codons_cnt.items():
marginal_probabilities[key] = value/f
with open('Huffman_result.inc', 'w') as f:
with redirect_stdout(f):
all_keys = [p[0] for p in
sorted([(k, cnt)
for k, cnt in marginal_probabilities.items()],
key=lambda p: p[1], reverse=True)]
two_columns = zip(all_keys[:len(all_keys)//2],
all_keys[len(all_keys)//2:])
for c1, c2 in two_columns:
print(f"{c1} & {marginal_probabilities[c1]:.4f} & {code_map[c1]} & {c2}" +
f" & {marginal_probabilities[c2]:.4f} & {code_map[c2]}\\\\")
""" Q6. Give the expected average length for your Huffman
code. Compare this value with (a) the empirical average length, and
(b) theoretical bound(s). Justify. """
print(f"Q6: Entropy of symbols : {entropy(Counter(GENOME_TEXT).values()):.2f}")
print(f"Q6: Entropy of codons : {entropy(codons_cnt.values()):.2f}")
prob = np.array(list(marginal_probabilities.values()), dtype=float)
huffman_codes_lens = np.array([len(code_map[k]) for k in codons_cnt.keys()])
expected_average_length = np.sum(prob*huffman_codes_lens)
print("Q6: expected average length : " +
f"{expected_average_length:.3f} bits per symbol")
# Here we compute what it would take if we'd store the
# frequencies table so that a decoder got the complete
# information to perform the decompression (we do a rough
# calculation here, it's not bit-exact).
frequencies_length = len(codons_cnt) * bits_to_represent(max(codons_cnt.values()))
total_compressed_length = frequencies_length + len(compressed)
print("Q6: empirical average length : " +
f"{total_compressed_length} bits / {len(GENOME_TEXT) / CODON_LEN:.1f} symbols = " +
f"{total_compressed_length/(len(GENOME_TEXT)//CODON_LEN):.3f} bits per symbol")
# Calculate the entropy for the bounds
entropy = - np.sum(prob*np.log2(prob))
print(f"Q6: entropy of source alphabet is : {entropy:.2f}")
""" Q7. Plot the evolution of the empirical average length of the
encoded genome using your Huffman code for increasing input genome
lengths. Discuss your result. """
if not ("skip7" in sys.argv):
# Make sure the step is a multiple of codon length
STEP = ((len(GENOME_TEXT)//100) // CODON_LEN) * CODON_LEN
# We'll do two graphs. One with fixed Huffman code and
# one with recomputed Huffman codes. This prepares
# for the first one.
const_huff_code_map, _ = build_codebooks(
build_huffman_tree(
Counter(
codons_iterator(GENOME_TEXT))))
x_axis = []
empirical_avg_lens = []
empirical_avg_lens_const_huffman = []
for i in range(STEP, len(GENOME_TEXT), STEP):
g = GENOME_TEXT[0:i]
codons_in_subgenome = len(g) // CODON_LEN
x_axis.append(round(100*len(g) / len(GENOME_TEXT)))
# First graph : one Huffman per sub-genome
codons_cnt = Counter(codons_iterator(g))
top_node = build_huffman_tree(codons_cnt)
code_map, decode_map = build_codebooks(top_node)
compressed_bits = encode(codons_iterator(g), code_map)
assert g == "".join(decode(compressed_bits, decode_map)), "Compression went wrong"
empirical_avg_lens.append(len(compressed_bits) / codons_in_subgenome)
# Second graph : one Huffman for all sub-genomes
compressed_bits = encode(codons_iterator(g), const_huff_code_map)
empirical_avg_lens_const_huffman.append(len(compressed_bits) / codons_in_subgenome)
print(f"{x_axis[-1]} {empirical_avg_lens[-1]:.3f} {empirical_avg_lens_const_huffman[-1]:.3f}")
plt.figure()
plt.plot(x_axis, empirical_avg_lens, label="One Huffman per subgenome")
plt.plot(x_axis, empirical_avg_lens_const_huffman,
label="One Huffman for all")
plt.title("Empirical average length")
plt.xlabel("Data size (% of the total genome size)")
plt.ylabel("Bits per codon")
plt.legend()
plt.savefig("q7.pdf")
#plt.show()
print("Q7: Empirical Average lengths : ", empirical_avg_lens)
""" Q9. Encode the genome using the on-line Lempel-Ziv algorithm. Give
the total length of the encoded genome and the compression rate."""
coded_bin, _ = online_lz_compress(StringIO(GENOME_TEXT), code_ascii_char)
decoded = online_lz_decompress(coded_bin, decode_ascii_char)
assert decoded == GENOME_TEXT, "something went wrong in the compression or decompression"
print()
print("Q9: encode genome with online LZ")
print("Q9: total length of source genome, without spaces : " +
f"{len(GENOME_TEXT)} symbols, {len(GENOME_TEXT)*8} bits")
print(f"Q9: total length of encoded genome : {len(coded_bin)} bits")
print("Q9: compression rate (lecture 4, slide 18) : " +
f"{len(GENOME_TEXT*8)} bits / {len(coded_bin)} bits = " +
f"{len(GENOME_TEXT*8)/len(coded_bin):.2f}.")
""" Q10. Encode the genome using the LZ77 algorithm. Give the total
length of the encoded genome and the compression rate."""
WIN_SIZE = 512*2
tuples = lz77_cached_compression(WIN_SIZE, GENOME_TEXT)
dl_bits = math.ceil(math.log2(WIN_SIZE))
char_bits = 8
tuple_bits = char_bits+2*dl_bits
print()
print(f"Q10: total length of source genome, without spaces : {len(GENOME_TEXT)} symbols, {len(GENOME_TEXT)*8} bits")
print(f"Q10: sliding window size = {WIN_SIZE} => {dl_bits} bits for d and l each")
print(f"Q10: {char_bits} bits per char => {tuple_bits} bits per tuples")
compressed_size, compression_rate = compute_compression_rate_for_LZ77(tuples, WIN_SIZE, GENOME_TEXT)
print(f"Q10: total length of encoded genome : {len(tuples)} tuples * {tuple_bits} bits = {compressed_size} bits")
print(f"Q10: compression rate : {len(GENOME_TEXT)*8} bits / {compressed_size} bits = {len(GENOME_TEXT)*8/compressed_size:.2f} ")
""" Q11. Famous data compression algorithms combine the LZ77 algorithm
and the Huffman algorithm. Explain how these algorithms can be
combined and discuss the interest of the possible combinations. """
""" What follows are the remnants of various computations we made
to check if our compression scheme (3 Huffman trees) was worth it.
"""
small_c = [c for d, l, c in tuples]
small_l = [l for d, l, c in tuples]
small_d = [d for d, l, c in tuples]
# FIXME Try this
#small_c, small_l, small_d = zip(*tuples)
# --------------------------------------------------------------------
# (l,d,c) -> tuple
tuples_count = Counter(tuples)
plt.plot(list(sorted(tuples_count.values())))
print(f"\n\n2. build_huffman_tree on {len(tuples)} tuples (of which {len(tuples_count)} are unique)")
tree_size = len(tuples_count) * (bits_to_represent(len(small_c)) + bits_to_represent(max(small_d)+1) + bits_to_represent(max(small_l)+1) + bits_to_represent(len(tuples_count)))
print(f"Tree size = {tree_size} bits => {tree_size//8} bytes")
top_node = build_huffman_tree(tuples_count)
code_map, decode_map = build_codebooks(top_node)
compressed_size = sum([len(code_map[t])*cnt for t, cnt in tuples_count.items()]) + tree_size
# --------------------------------------------------------------------
# (l,d,c) -> (l,c) + (d)
dist_count = Counter(small_d)
len_count = Counter(small_l)
char_count = Counter(small_c)
print(char_count)
# char_count = dict(zip(CODONS, [c[codon] for codon in CODONS]))
plt.figure()
plt.plot(list(dist_count.values()))
plt.xlabel("Distances")
plt.ylabel("# occurences")
# plt.show()
plt.figure()
plt.plot(list(len_count.values()))
plt.xlabel("Lengths")
plt.ylabel("# occurences")
# plt.show()
top_node = build_huffman_tree(dist_count)
dist_code_map, dist_decode_map = build_codebooks(top_node)
dist_tree_size = len(dist_count) * (bits_to_represent(max(dist_count.values())+1) + bits_to_represent(max(dist_count.keys())+1))
len_tree_size = len(len_count) * (bits_to_represent(max(len_count.values())+1) + bits_to_represent(max(len_count.keys())+1))
char_tree_size = len(char_count) * bits_to_represent(max(char_count.values())+1)
all_trees_size = dist_tree_size + len_tree_size + char_tree_size
print(f"All tree size = {all_trees_size} bits => {all_trees_size//8} bytes")
top_node = build_huffman_tree(len_count)
len_code_map, len_decode_map = build_codebooks(top_node)
top_node = build_huffman_tree(char_count)
char_code_map, char_decode_map = build_codebooks(top_node)
print(f"Dist counts : {len(dist_count)}")
print(f"Len counts : {len(len_count)}")
print(f"C counts : {len(char_count)}")
print(f"1. l + c + d : build_huffman_tree on {len(tuples)} tuples (of which {len(char_count)} are unique)")
compressed_size = sum([len(char_code_map[c]) + len(len_code_map[l]) + len(dist_code_map[d]) for d,l,c in tuples]) + all_trees_size
plt.figure()
plt.plot(list(sorted(char_count.values())))
#plt.show()
# --------------------------------------------------------------------
"""Q12. Encode the genome using the best (according to your answer in
the previous question) combination of LZ77 and Huffman
algorithms. Give the total length of the encoded genome and the
compression rate."""
def lz_with_huffman_encode(sliding_window_size, genome):
tuples = lz77_cached_compression(sliding_window_size, genome)
distances, lengths, chars = zip(*tuples)
dist_count = Counter(distances)
len_count = Counter(lengths)
char_count = Counter(chars)
bits = bitarray()
# print("Counts for distances")
bits.extend(compress_counts(dist_count))
# print("Counts for lengths")
bits.extend(compress_counts(len_count))
# print("Counts for chars")
bits.extend(compress_counts(char_count))
# Building Huffman trees and codebooks
top_node = build_huffman_tree(dist_count)
dist_code_map, _ = build_codebooks(top_node)
top_node = build_huffman_tree(len_count)
len_code_map, _ = build_codebooks(top_node)
top_node = build_huffman_tree(char_count)
char_code_map, _ = build_codebooks(top_node)
for d, l, c in tuples:
# Compress a tuple (d,l,c) into its huffman representation
# (d -> 0101..., l -> 11000, c->101010), using a different
# codebook for d,l and c.
bits.extend(bitarray(dist_code_map[d]))
bits.extend(bitarray(len_code_map[l]))
bits.extend(bitarray(char_code_map[c]))
return bits
def lz_with_huffman_decode(bits):
total_read_bits = 0
read_bits, dist_count = decompress_counts(bits)
total_read_bits += read_bits
read_bits, len_count = decompress_counts(bits[total_read_bits:])
total_read_bits += read_bits
read_bits, char_count = decompress_counts(bits[total_read_bits:], as_type='char')
total_read_bits += read_bits
# assert sum(dist_count.values()) == sum(len_count.values()) == \
# sum(char_count.values()) == len(tuples), "Counts deomcpression went bad"
top_node = build_huffman_tree(dist_count)
dist_code_map, dist_decode_map = build_codebooks(top_node)
top_node = build_huffman_tree(len_count)
len_code_map, len_decode_map = build_codebooks(top_node)
top_node = build_huffman_tree(char_count)
char_code_map, char_decode_map = build_codebooks(top_node)
dtuples = []
for i in range(sum(dist_count.values())):
# total_read_bits+100 : make sure we don't extract all the remaining
# of bit array to decode_one_symbol function each time => it's a
# speed optimisation. We can do it because we assume Huffman codes
# won't be more than 100 bits. Ideally we could compute that number
# based on Huffman trees themselves.
read_bits, d = decode_one_symbol(
bits[total_read_bits:total_read_bits+100], dist_decode_map)
total_read_bits += read_bits
read_bits, l = decode_one_symbol(
bits[total_read_bits:total_read_bits+100], len_decode_map)
total_read_bits += read_bits
read_bits, c = decode_one_symbol(
bits[total_read_bits:total_read_bits+100], char_decode_map)
total_read_bits += read_bits
dtuples.append((d, l, c))
if len(dtuples) % 10000 == 0:
print(len(dtuples))
print(f"Bits read = {total_read_bits}; decompresseed tuples = {len(dtuples)}")
# assert len(tuples) == len(dtuples)
# for i in range(len(tuples)):
# assert dtuples[i] == tuples[i], \
# f"Decompression failed on tuples {tuples[i]} != {dtuples[i]}"
return LZ77_decoder(dtuples)
bits = lz_with_huffman_encode(WIN_SIZE, GENOME_TEXT)
print()
print("Q12: total length of source genome, without spaces : " +
f"{len(GENOME_TEXT)} symbols, {len(GENOME_TEXT)*8} bits on disk")
print(f"Q12: LZ77+Huffman coded file length : {len(bits)} bits")
rate = len(GENOME_TEXT)*8 / len(bits)
print(f"Q12: Compression rate : {len(GENOME_TEXT)*8} bits / " +
f"{len(bits)} bits = {rate:.2f}")
assert "".join(lz_with_huffman_decode(bits)) == GENOME_TEXT, "Decompression didn't work"
""" Q13. Report the total lengths and compression rates using (a) LZ77
and (b) the combination of LZ77 and Huffman, to encode the genome for
different values of the sliding window size l. Compare your result
with the total length and compression rate obtained using the on-line
Lempel-Ziv algorithm. Discuss your results. """
with open("q13.inc", "w") as output:
for sliding_window_size in [256, 512, 1024, 2048, 4096, 8192, 16384,
32768, 65536, 2**17, 2**18]:
# LZ77 only
tuples = lz77_cached_compression(sliding_window_size, GENOME_TEXT)
compressed_size, compression_rate = compute_compression_rate_for_LZ77(
tuples, sliding_window_size, GENOME_TEXT)
# LZ77 + Huffman
bits = lz_with_huffman_encode(sliding_window_size, GENOME_TEXT)
lz77_huffman_rate = len(GENOME_TEXT)*8 / len(bits)
txt = f"{sliding_window_size} & {compressed_size} & " + \
f"{compression_rate:.2f} & {len(bits)} & " + \
f"{lz77_huffman_rate:.2f} \\\\"
print(txt)
output.write(txt + "\n")