forked from wiz21b/TechnoInfoCom
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp1_pandas.py
402 lines (287 loc) · 11.1 KB
/
p1_pandas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
def marginalize(dist_table: pd.DataFrame, var_to_keep, leave_values=False):
"""
Marginalize variables out of probability distribution table.
dist_table: The probability distribution table is a DataFrame of which
the first columns are the random variables values and the
last column is the probability of having this combination
of values (joint probability). For example : [X, Y, P(X ^ Y)].
Each column are labelled with capital letter
denoting the name of the variable (for the columns containing
variables).
var_to_keep: the marginalization target. So If one has P(X^Y) and
want to get P(X) out of it, then X is such a target.
"""
p_column = dist_table.columns[-1]
r = dist_table.groupby(var_to_keep).agg(
summed=(p_column, 'sum')).reset_index()
# Normalize probabilities so they sum to one.
r['summed'] /= r['summed'].sum()
if not leave_values:
# Only return probabilities, not a whole
# contingency table
return r['summed']
else:
# Return a fulle contingency table, with
# nice colums headers.
if type(var_to_keep) == str:
# Only one variable was given
p_name = f"P({var_to_keep})"
else:
# Several variables were given
p_name = f"P({'^'.join(var_to_keep)})"
r.rename(columns={'summed': p_name}, inplace=True)
return r
def entropy(probabilities: np.array):
"""
Computes H(X)
X is given as a numpy array, all elements of the array
are assumed to represent the distribution (to the shape
of the array is not meaningful)
"""
# Avoid situations where log can't be computed
non_zero = probabilities[probabilities != 0]
return - np.sum(non_zero * np.log2(non_zero))
def joint_entropy(x_and_y: pd.DataFrame):
"""
Computes the joint entropy H(X,Y)
Expects a dataframe with three columns :
- values of X
- values of Y
- P(X=x, Y=y) : probability distribution; must sum to one.
"""
return entropy(x_and_y["P(X^Y)"])
def cond_entropy(x_given_y: pd.DataFrame, y: pd.DataFrame):
"""
Compute the conditional entropy
Expects a dataframe with three columns :
- x_given_y: values of X|Y as table of rows (x,y,X=x|Y=y)
- y: values of P(Y=y) as one column table
"""
# First, relate P(X_i|Y_j) to P(Y_j)
r = pd.merge(x_given_y, y)
return - np.sum(r["P(X|Y)"] * r["P(Y)"] * np.log2(r["P(X|Y)"]))
def mutual_information(x_and_y: pd.DataFrame,
var_x: str = "X",
var_y: str = "Y"):
""" Computes :
I(X;Y) = H(X) + H(Y) - H(X,Y)
Expects parameters :
- x_and_y : a table (DataFrame) giving P(one row of the table)
- var_x : name of the variable X, must be in the columns of x_and_y
- var_y : name of the variable Y, must be in the columns of x_and_y
"""
# The code here is a bit more dynamic so we can use this function
# in part 2 of the problem statement.
# Compute probabilities for all values of random variable X.
x = marginalize(x_and_y, var_x)
y = marginalize(x_and_y, var_y)
# last column is the probabilities
p_x_and_y = x_and_y[x_and_y.columns[-1]]
# FIXME What happen sif the table has these
# columns : X,Y,a,b,c,P(row)
return entropy(x) + entropy(y) - entropy(p_x_and_y)
def joint_entropy3(x_and_y_and_z):
# Compute joint entropy on three variables
return entropy(x_and_y_and_z["P(X^Y^Z)"])
def cond_mutual_information(x_and_y_and_z: pd.DataFrame):
# I(X;Y|Z) = H(X,Z)+ H(Y,Z) - H(Z) - H(X,Y,Z)
vx,vy,vz,joint_p = list(x_and_y_and_z.columns)
x_and_z = marginalize(x_and_y_and_z, [vx, vz]) # X and Z
y_and_z = marginalize(x_and_y_and_z, [vy, vz])
z = marginalize(x_and_y_and_z, vz)
return entropy(x_and_z) - entropy(z) - entropy(x_and_y_and_z[joint_p]) + entropy(y_and_z)
def cond_joint_entropy(x_and_y_and_z):
# H(X,Y|Z) = H(X,Y,Z) - H(Z) (see above)
z = marginalize(x_and_y_and_z, "Z")
return entropy(x_and_y_and_z['P(X^Y^Z)']) - entropy(z)
def implementation():
# Some test data sets
x_given_y = pd.DataFrame(
[[True, True, 0.25],
[True, False, 0.25],
[False, True, 0.2],
[False, False, 0.3]],
columns=["X", "Y", "P(X|Y)"])
x_and_y = pd.DataFrame(
[[True, True, 0.25],
[True, False, 0.25],
[False, True, 0.2],
[False, False, 0.3]],
columns=["X", "Y", "P(X^Y)"])
y = pd.DataFrame([[True, 0.3],
[False, 0.7]],
columns=["Y", "P(Y)"])
x_and_y_and_z = pd.DataFrame(
[[True, True, True, 0.25],
[True, True, False, 0.25],
[True, False, True, 0.2],
[True, False, False, 0.3],
[False, True, True, 0.25],
[False, True, False, 0.25],
[False, False, True, 0.2],
[False, False, False, 0.3]],
columns=["X", "Y", "Z", "P(X^Y^Z)"])
# Q1
entropy(x_and_y)
# Q2
joint_entropy(x_and_y)
# Q3
cond_entropy(x_given_y, y)
# Q4
mutual_information(x_and_y)
# Q5
joint_entropy3(x_and_y_and_z)
cond_joint_entropy(x_and_y_and_z)
cond_mutual_information(x_and_y_and_z)
def medical_diagnosis():
df = pd.read_csv('P1_medicalDB.csv')
print(df)
# Compute joint proabilities and add them to the table
"""
a,i,w
a,i,w
a,i,z
=>
a,i,w 2
a,i,z 1
"""
jpd = df.groupby(list(df.columns)).size().reset_index()
"""
a,i,w 2 / sum(1+2) => P(a,i,w)
a,i,z 1 / sum(1+2) => P(a,i,z)
"""
jpd[0] /= jpd[0].sum() # r[0] is the new counts columns; it's the last column
# Question 6
entropies = []
cardinalities = []
names = []
"""
age, obseity, BIL, ...
----------------------------
>40, y, 10
<40, n, 11
...
"""
for var_name in jpd.columns[0:-1]: # every column but the last one
card = len(jpd[var_name].unique())
# => >40, <40. => cardinality
# H(age) = P(>40)*log(P(>40)) + P(<40)*log(P(<40))
e = entropy(marginalize(jpd, var_name))
names.append(var_name)
cardinalities.append(card)
entropies.append(e)
with open("question6.inc","w") as fout:
for vname, ent in sorted( zip(names, entropies), key=lambda t:t[1]):
fout.write(f"{vname} & {ent:.3f} \\\\\n")
plt.figure()
plt.scatter(cardinalities, entropies)
for i, name in enumerate(names):
plt.annotate(name, (cardinalities[i], entropies[i]))
plt.xticks([2,3,4])
plt.xlabel("Cardinalities")
plt.ylabel("Entropies")
plt.savefig("entropiescardinalities.pdf")
plt.show()
# Question 7
# All variables names excluding the disease (DIS)
# Make a list(...) to keep order
vnames = list(set(list(df.columns)) - set(['DIS']))
entropies = []
for vname in vnames:
""" Compute the conditional entropy H(DIS|variable) based on joint
probability table.
age, obseity, BIL, ...
----------------------------
>40, y, 10
<40, n, 11
... for missing combinations of variables we have :
?, ?, ? => P(?,?,?) = 0
X Y Z P(X,y,Z)
-------------- --> FULL P(x,y,z) table.
n n n 0.1
n y n
n n y
n y y
y n n
y y n
y n y
y y y
We can't reuse our funtion cond_entropy() because it expects
P(X|Y) but the most direct thing we have is P(X^Y).
Slide 3, course 2 : H(X|Y) = − Σ Σ P(Xi ∩ Yj) log P(Xi | Yj)
Applying P(a|b) = P(a ^ b) / P(b), we get :
H(X|Y) = − Σ Σ P(Xi ∩ Yj) log P(Xi ∩ Yj) / P(Yj)
Renaming X -> D, T -> S(ymptom)
H(D|S) = − Σ Σ P(Di ∩ Sj) log P(Di ∩ Sj) / P(Sj)
"""
dis_symptom = marginalize(jpd, ["DIS", vname], True) # P(D ∩ S)
symptom = marginalize(dis_symptom, vname, True) # P(S)
m = pd.merge(dis_symptom, symptom) # relate (d_i ^ s_j)'s to s_j's
p_di_sj = m[m.columns[-2]] # P(d_i^s_j)
p_sj = m[m.columns[-1]] # P(s_j)
e = - np.sum(p_di_sj * np.log2(p_di_sj / p_sj)) # compute H
entropies.append( (vname,e) )
for vname, e in sorted(entropies, key=lambda p:p[1]):
e = f"{e:.3f}"
if vname in ('JAU', 'BIL'):
vname = f"\\textbf{{{vname}}}"
e = f"\\textbf{{{e}}}"
print(f"{vname} & {e} \\\\")
# Question 8
obesity_age = marginalize(jpd, ["obesity", "age"], True)
print(mutual_information(obesity_age, "obesity", "age"))
print(mutual_information(obesity_age, "age", "obesity")) # swap variabkes to checking for bugs
# Try with different variables to see if the results are the same than in question 9
obesity_dic = marginalize(jpd, ["obesity", "DIS"], True)
print(mutual_information(obesity_dic, "obesity", "DIS"))
print(mutual_information(obesity_dic, "DIS", "obesity"))
# Question 9
print("-"*80)
mutual_info = []
for vname in vnames:
dis_symptom = marginalize(jpd, ["DIS", vname], True)
mi = mutual_information(dis_symptom, "DIS", vname)
mutual_info.append((vname,mi))
for vname, i in sorted(mutual_info, key=lambda p:p[1]):
i = f"{i:.3f}"
print(f"{vname} & {i} \\\\")
# Question 10
# Recompute joint proabilities excluding steatosis/healthy
jpd = df[df.DIS.isin(['steatosis', 'healthy'])].groupby(
list(df.columns)).size().reset_index()
jpd[0] /= jpd[0].sum() # r[0] is the counts columns
mutual_info = []
for vname in vnames:
dis_symptom = marginalize(jpd, ["DIS", vname], True)
symptom = marginalize(dis_symptom, vname, True)
m = pd.merge(dis_symptom, symptom) # relate (x_i^y_j)'s to y_j's
p_di_sj = m[m.columns[-2]] # P(x_i^y_j)
p_sj = m[m.columns[-1]] # P(y_j)
e = - np.sum(p_di_sj * np.log2(p_di_sj / p_sj))
mi = mutual_information(dis_symptom, "DIS", vname)
mutual_info.append((vname,mi))
# print(f"DIS|{vname:10s}:\tH={e:.3f} I={mi:.3f}")
with open("question10.inc","w") as fout:
for vname, mi in sorted(mutual_info, key=lambda p:p[1]):
fout.write(f"{vname} & {mi:.3f} \\\\\n")
# Question 11
jpd = df[df.age.isin(['morethan40', 'healthy'])].groupby(
list(df.columns)).size().reset_index()
jpd[0] /= jpd[0].sum() # r[0] is the counts columns
mutual_info = []
vnames = list(set(list(df.columns)) - set(['DIS','age']))
for vname in vnames:
dis_symptom_age = marginalize(jpd, ["DIS", vname, 'age'], True)
# I(DIS;symptom|age)
cmi = cond_mutual_information(dis_symptom_age)
mutual_info.append((vname, cmi))
with open("question11.inc","w") as fout:
for vname, cmi in sorted(mutual_info, key=lambda p:p[1]):
fout.write(f"{vname} & {cmi:.3f} \\\\\n")
print(f"I(DIS;{vname:10s}|age) :\tI={cmi:.3f}")
if __name__ == "__main__":
implementation()
medical_diagnosis()