forked from OpenNMT/OpenNMT-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
579 lines (510 loc) · 23.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
"""
This is the loadable seq2seq trainer library that is
in charge of training details, loss compute, and statistics.
See train.py for a use case of this library.
Note: To make this a general library, we implement *only*
mechanism things here(i.e. what to do), and leave the strategy
things to users(i.e. how to do it). Also see train.py(one of the
users of this library) for the strategy things we do.
"""
import time
import torch
import traceback
import onmt.utils
from onmt.utils.loss import LossCompute
from onmt.utils.logging import logger
from onmt.utils.scoring_utils import ScoringPreparator
from onmt.scorers import get_scorers_cls, build_scorers
def build_trainer(opt, device_id, model, vocabs, optim, model_saver=None):
"""
Simplify `Trainer` creation based on user `opt`s*
Args:
opt (:obj:`Namespace`): user options (usually from argument parsing)
model (:obj:`onmt.models.NMTModel`): the model to train
fields (dict): dict of fields
optim (:obj:`onmt.utils.Optimizer`): optimizer used during training
data_type (str): string describing the type of data
e.g. "text"
model_saver(:obj:`onmt.models.ModelSaverBase`): the utility object
used to save the model
"""
train_loss = LossCompute.from_opts(opt, model, vocabs['tgt'])
valid_loss = LossCompute.from_opts(opt, model, vocabs['tgt'], train=False)
scoring_preparator = ScoringPreparator(vocabs=vocabs, opt=opt)
validset_transforms = opt.data.get("valid", {}).get("transforms", None)
if validset_transforms:
scoring_preparator.warm_up(validset_transforms)
scorers_cls = get_scorers_cls(opt.train_metrics)
train_scorers = build_scorers(opt, scorers_cls)
scorers_cls = get_scorers_cls(opt.valid_metrics)
valid_scorers = build_scorers(opt, scorers_cls)
trunc_size = opt.truncated_decoder # Badly named...
norm_method = opt.normalization
accum_count = opt.accum_count
accum_steps = opt.accum_steps
n_gpu = opt.world_size
average_decay = opt.average_decay
average_every = opt.average_every
dropout = opt.dropout
attention_dropout = opt.attention_dropout
dropout_steps = opt.dropout_steps
if device_id >= 0:
gpu_rank = opt.gpu_ranks[device_id]
else:
gpu_rank = -1
n_gpu = 0
earlystopper = onmt.utils.EarlyStopping(
opt.early_stopping, scorers=onmt.utils.scorers_from_opts(opt)) \
if opt.early_stopping > 0 else None
report_manager = onmt.utils.build_report_manager(opt, gpu_rank)
trainer = onmt.Trainer(model,
train_loss, valid_loss,
scoring_preparator, train_scorers, valid_scorers,
optim, trunc_size, norm_method,
accum_count, accum_steps,
n_gpu, gpu_rank,
opt.train_eval_steps, report_manager,
with_align=True if opt.lambda_align > 0 else False,
model_saver=model_saver if gpu_rank <= 0 else None,
average_decay=average_decay,
average_every=average_every,
model_dtype=opt.model_dtype,
earlystopper=earlystopper,
dropout=dropout,
attention_dropout=attention_dropout,
dropout_steps=dropout_steps)
return trainer
class Trainer(object):
"""
Class that controls the training process.
Args:
model(:py:class:`onmt.models.model.NMTModel`): translation model
to train
train_loss(:obj:`onmt.utils.loss.LossComputeBase`):
training loss computation
valid_loss(:obj:`onmt.utils.loss.LossComputeBase`):
training loss computation
scoring_preparator(:obj:`onmt.translate.utils.ScoringPreparator`):
preparator for the calculation of metrics via the
training_eval_handler method
train_scorers (dict): keeps in memory the current values
of the training metrics
valid_scorers (dict): keeps in memory the current values
of the validation metrics
optim(:obj:`onmt.utils.optimizers.Optimizer`):
the optimizer responsible for update
trunc_size(int): length of truncated back propagation through time
accum_count(list): accumulate gradients this many times.
accum_steps(list): steps for accum gradients changes.
n_gpu (int): number of gpu.
gpu_rank (int): ordinal rank of the gpu in the list.
train_eval_steps (int): process a validation every x steps.
report_manager(:obj:`onmt.utils.ReportMgrBase`):
the object that creates reports, or None
with_align (bool): whether to jointly lear alignment (Transformer)
model_saver(:obj:`onmt.models.ModelSaverBase`): the saver is
used to save a checkpoint.
Thus nothing will be saved if this parameter is None.
average_decay (float): cf opt.average_decay
average_every (int): average model every x steps.
model_dtype (str): fp32 or fp16.
earlystopper (:obj:`onmt.utils.EarlyStopping`): add early
stopping mecanism
dropout (float): dropout value in RNN or FF layers.
attention_dropout (float): dropaout in attention layers.
dropout_steps (list): dropout values scheduling in steps.
"""
def __init__(self, model, train_loss, valid_loss,
scoring_preparator, train_scorers, valid_scorers,
optim,
trunc_size=0,
norm_method='sents',
accum_count=[1],
accum_steps=[0],
n_gpu=1, gpu_rank=1,
train_eval_steps=200,
report_manager=None, with_align=False, model_saver=None,
average_decay=0, average_every=1, model_dtype='fp32',
earlystopper=None, dropout=[0.3], attention_dropout=[0.1],
dropout_steps=[0]):
# Basic attributes.
self.model = model
self.train_loss = train_loss
self.valid_loss = valid_loss
self.scoring_preparator = scoring_preparator
self.train_scorers = train_scorers
self.valid_scorers = valid_scorers
self.optim = optim
self.trunc_size = trunc_size
self.norm_method = norm_method
self.accum_count_l = accum_count
self.accum_count = accum_count[0]
self.accum_steps = accum_steps
self.n_gpu = n_gpu
self.gpu_rank = gpu_rank
self.report_manager = report_manager
self.train_eval_steps = train_eval_steps
self.with_align = with_align
self.model_saver = model_saver
self.average_decay = average_decay
self.moving_average = None
self.average_every = average_every
self.model_dtype = model_dtype
self.earlystopper = earlystopper
self.dropout = dropout
self.attention_dropout = attention_dropout
self.dropout_steps = dropout_steps
for i in range(len(self.accum_count_l)):
assert self.accum_count_l[i] > 0
# Set model in training mode.
self.model.train()
def _training_eval_handler(self, scorer, preds, texts_ref):
"""Trigger metrics calculations
Args:
scorer (:obj:`onmt.scorer.Scorer`): scorer.
preds, texts_ref: outputs of the scorer's `translate` method.
Returns: The metric calculated by the scorer.
"""
return scorer.compute_score(preds, texts_ref)
def _accum_count(self, step):
for i in range(len(self.accum_steps)):
if step > self.accum_steps[i]:
_accum = self.accum_count_l[i]
return _accum
def _maybe_update_dropout(self, step):
for i in range(len(self.dropout_steps)):
if step > 1 and step == self.dropout_steps[i] + 1:
self.model.update_dropout(self.dropout[i],
self.attention_dropout[i])
logger.info("Updated dropout/attn dropout to %f %f at step %d"
% (self.dropout[i],
self.attention_dropout[i], step))
def _accum_batches(self, iterator):
batches = []
normalization = 0
self.accum_count = self._accum_count(self.optim.training_step)
for batch in iterator:
batches.append(batch)
if self.norm_method == "tokens":
num_tokens = batch['tgt'][:, 1:, 0].ne(
self.train_loss.padding_idx).sum()
normalization += num_tokens.item()
normalization -= len(batch['tgt']) # don't count for EOS
else:
normalization += len(batch['tgt'])
if len(batches) == self.accum_count:
yield batches, normalization
self.accum_count = self._accum_count(self.optim.training_step)
batches = []
normalization = 0
if batches:
yield batches, normalization
def _update_average(self, step):
if self.moving_average is None:
copy_params = [params.detach().float()
for params in self.model.parameters()]
self.moving_average = copy_params
else:
average_decay = max(self.average_decay,
1 - (step + 1) / (step + 10))
for (i, avg), cpt in zip(enumerate(self.moving_average),
self.model.parameters()):
self.moving_average[i] = \
(1 - average_decay) * avg + \
cpt.detach().float() * average_decay
def train(self,
train_iter,
train_steps,
save_checkpoint_steps=5000,
valid_iter=None,
valid_steps=10000):
"""
The main training loop by iterating over `train_iter` and possibly
running validation on `valid_iter`.
Args:
train_iter: An iterator that returns the next training batch.
train_steps: Run training for this many iterations.
save_checkpoint_steps: Save a checkpoint every this many
iterations.
valid_iter: A generator that returns the next validation batch.
valid_steps: Run evaluation every this many iterations.
Returns:
:obj:`nmt.Statistics`: training loss statistics
"""
if valid_iter is None:
logger.info('Start training loop without validation...')
valid_stats = None
else:
logger.info('Start training loop and validate every %d steps...',
valid_steps)
logger.info(
"Scoring with: {}".format(self.scoring_preparator.transform))
total_stats = onmt.utils.Statistics()
report_stats = onmt.utils.Statistics()
self._start_report_manager(start_time=total_stats.start_time)
# Let's clean the GPUs before training loop
torch.cuda.empty_cache()
for i, (batches, normalization) in enumerate(
self._accum_batches(train_iter)):
step = self.optim.training_step
# UPDATE DROPOUT
self._maybe_update_dropout(step)
if self.n_gpu > 1:
normalization = sum(onmt.utils.distributed
.all_gather_list
(normalization))
self._gradient_accumulation(
batches, normalization, total_stats,
report_stats)
if self.average_decay > 0 and i % self.average_every == 0:
self._update_average(step)
report_stats = self._maybe_report_training(
step, train_steps,
self.optim.learning_rate(),
report_stats)
if (valid_iter is not None and step % valid_steps == 0 and
self.gpu_rank <= 0):
valid_stats = self.validate(
valid_iter, moving_average=self.moving_average)
if step % valid_steps == 0 and self.gpu_rank <= 0:
self._report_step(self.optim.learning_rate(),
step, valid_stats=valid_stats,
train_stats=total_stats)
# Run patience mechanism
if self.earlystopper is not None:
self.earlystopper(valid_stats, step)
# If the patience has reached the limit, stop training
if self.earlystopper.has_stopped():
logger.info("earlystopper has_stopped!")
break
if (self.model_saver is not None
and (save_checkpoint_steps != 0
and step % save_checkpoint_steps == 0)):
self.model_saver.save(step, moving_average=self.moving_average)
if train_steps > 0 and step >= train_steps:
break
if self.model_saver is not None:
self.model_saver.save(step, moving_average=self.moving_average)
return total_stats
def validate(self, valid_iter, moving_average=None):
""" Validate model.
valid_iter: validate data iterator
Returns:
:obj:`nmt.Statistics`: validation loss statistics
"""
valid_model = self.model
if moving_average:
# swap model params w/ moving average
# (and keep the original parameters)
model_params_data = []
for avg, param in zip(self.moving_average,
valid_model.parameters()):
model_params_data.append(param.data)
param.data = avg.data.half() if param.dtype == torch.float16 \
else avg.data
# Set model in validating mode.
valid_model.eval()
transformed_batches = []
with torch.no_grad():
stats = onmt.utils.Statistics()
start = time.time()
for batch in valid_iter:
src = batch['src']
src_len = batch['srclen']
tgt = batch['tgt']
if self.valid_scorers:
transformed_batch = self.scoring_preparator.\
ids_to_tokens_batch(batch)
transformed_batches.append(transformed_batch)
with torch.cuda.amp.autocast(enabled=self.optim.amp):
# F-prop through the model.
model_out, attns = valid_model(src, tgt, src_len,
with_align=self.with_align)
# Compute loss.
_, batch_stats = self.valid_loss(batch, model_out, attns)
stats.update(batch_stats)
logger.info("""valid stats calculation and sentences rebuilding
took: {} s.""".format(time.time() - start))
# Compute validation metrics (at batch.dataset level)
if len(self.valid_scorers) > 0:
computed_metrics = {}
start = time.time()
preds, texts_ref = self.scoring_preparator.translate(
model=self.model,
transformed_batches=transformed_batches,
gpu_rank=self.gpu_rank,
step=self.optim.training_step,
mode="valid")
logger.info("""The translation of the valid dataset
took : {} s.""".format(time.time() - start))
for i, metric in enumerate(self.valid_scorers):
logger.info("UPDATING VALIDATION {}".format(metric))
self.valid_scorers[
metric]["value"] = self._training_eval_handler(
scorer=self.valid_scorers[metric]["scorer"],
preds=preds,
texts_ref=texts_ref)
computed_metrics[
metric] = self.valid_scorers[metric]["value"]
logger.info(
"validation {}: {}".format(
metric, self.valid_scorers[metric]["value"])
)
# Compute stats
metric_stats = onmt.utils.Statistics(
0, 0, 0, 0, 0,
computed_metrics)
# Update statistics.
stats.update(metric_stats)
if moving_average:
for param_data, param in zip(model_params_data,
self.model.parameters()):
param.data = param_data
# Set model back to training mode.
valid_model.train()
return stats
def _gradient_accumulation(self, true_batches, normalization, total_stats,
report_stats):
"""Function that iterates over big batches = ``true_batches``
perform a backward on the loss of each sub_batch and
finally update the params at the end of the big batch."""
if self.accum_count > 1:
self.optim.zero_grad(set_to_none=True)
for k, batch in enumerate(true_batches):
target_size = batch['tgt'].size(1)
# Truncated BPTT: reminder not compatible with accum > 1
if self.trunc_size:
trunc_size = self.trunc_size
else:
trunc_size = target_size
src = batch['src']
src_len = batch['srclen']
if src_len is not None:
report_stats.n_src_words += src_len.sum().item()
total_stats.n_src_words += src_len.sum().item()
tgt_outer = batch['tgt']
bptt = False
for j in range(0, target_size - 1, trunc_size):
# 1. Create truncated target.
tgt = tgt_outer[:, j: j + trunc_size, :]
# 2. F-prop all but generator.
if self.accum_count == 1:
self.optim.zero_grad(set_to_none=True)
try:
with torch.cuda.amp.autocast(enabled=self.optim.amp):
model_out, attns = self.model(
src, tgt, src_len, bptt=bptt,
with_align=self.with_align)
bptt = True
# 3. Compute loss.
loss, batch_stats = self.train_loss(
batch,
model_out,
attns,
trunc_start=j,
trunc_size=trunc_size)
step = self.optim.training_step
if (
self.train_scorers != {} and
step % self.train_eval_steps == 0
):
# Compute and save stats
computed_metrics = {}
transformed_batch = self.scoring_preparator.\
ids_to_tokens_batch(batch)
preds, texts_ref = self.scoring_preparator.translate(
model=self.model,
transformed_batches=[transformed_batch],
gpu_rank=self.gpu_rank,
step=self.optim.training_step,
mode="train")
for i, metric in enumerate(self.train_scorers):
logger.info("UPDATING TRAINING {}".format(metric))
self.train_scorers[
metric]["value"] = self._training_eval_handler(
scorer=self.train_scorers[
metric]["scorer"],
preds=preds,
texts_ref=texts_ref)
logger.info(
"training {}: {}".format(
metric, self.train_scorers[
metric]["value"]))
computed_metrics[
metric] = self.train_scorers[metric]["value"]
batch_stats.computed_metrics = computed_metrics
if loss is not None:
# in theory we should divide by accum_count and bptt
# to rescale for each sub batch
loss /= normalization
self.optim.backward(loss)
total_stats.update(batch_stats)
report_stats.update(batch_stats)
except Exception as exc:
trace_content = traceback.format_exc()
if "CUDA out of memory" in trace_content:
logger.info("Step %d, cuda OOM - batch removed",
self.optim.training_step)
torch.cuda.empty_cache()
else:
traceback.print_exc()
raise exc
# 4. Update the parameters and statistics.
if self.accum_count == 1:
# Multi GPU gradient gather
if self.n_gpu > 1:
grads = [p.grad.data for p in self.model.parameters()
if p.requires_grad
and p.grad is not None]
onmt.utils.distributed.all_reduce_and_rescale_tensors(
grads, float(self.n_gpu))
self.optim.step()
# If truncated, don't backprop fully.
if self.model.decoder.state != {}:
self.model.decoder.detach_state()
# in case of multi step gradient accumulation,
# update only after accum batches
if self.accum_count > 1:
if self.n_gpu > 1:
grads = [p.grad.data for p in self.model.parameters()
if p.requires_grad
and p.grad is not None]
onmt.utils.distributed.all_reduce_and_rescale_tensors(
grads, float(self.n_gpu))
self.optim.step()
def _start_report_manager(self, start_time=None):
"""
Simple function to start report manager (if any)
"""
if self.report_manager is not None:
if start_time is None:
self.report_manager.start()
else:
self.report_manager.start_time = start_time
def _maybe_report_training(self, step, num_steps, learning_rate,
report_stats):
"""
Simple function to report training stats (if report_manager is set)
see `onmt.utils.ReportManagerBase.report_training` for doc
"""
if self.report_manager is not None:
return self.report_manager.report_training(
step,
num_steps,
learning_rate,
None if self.earlystopper is None
else self.earlystopper.current_tolerance,
report_stats,
multigpu=self.n_gpu > 1)
def _report_step(self, learning_rate, step,
valid_stats=None, train_stats=None):
"""
Simple function to report stats (if report_manager is set)
see `onmt.utils.ReportManagerBase.report_step` for doc
"""
if self.report_manager is not None:
return self.report_manager.report_step(
learning_rate,
None if self.earlystopper is None
else self.earlystopper.current_tolerance,
step, valid_stats=valid_stats, train_stats=train_stats)