-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
118 lines (96 loc) · 4.24 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import numpy as np
import torch
import time
import copy
from sklearn.metrics import f1_score
def train_model(model, device, dataloaders, criterion, optimizer, scheduler, n_classes, num_epochs=1, phase='train', valloader_for_train=None):
tloss, tacc = [], []
vloss, vacc = [], []
f1score = []
since = time.time()
model.to(device)
initial_model = copy.deepcopy(model)
#best_model_wts = copy.deepcopy(model.state_dict())
#best_acc = 0.0
for epoch in range(num_epochs):
print('Client Epoch {}/{}'.format(epoch + 1, num_epochs))
# Each epoch has a training and validation phase
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
f1_running_score = 0
b_nr = 0
# Iterate over data.
for inputs, labels in dataloaders['data']:
b_nr += 1
inputs = inputs.to(device)
labels = labels.to(device)
if phase == 'train':
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
#_, preds = torch.max(outputs, 1)
outputcpu = outputs.cpu()
preds = np.heaviside(outputcpu.detach().numpy(), 0)
loss = criterion.loss_calculate(outputs, labels.type(
torch.float), model, initial_model)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
#outputsnp = outputs.cpu().numpy()
#preds = np.array(outputsnp > 0.5, dtype=float)
running_loss += loss.item() * inputs.size(0)
running_corrects += ((torch.sum(torch.from_numpy(preds).to(device)
== labels.data)).item() / n_classes)
f1_running_score += f1_score(preds,
labels.data.to("cpu").numpy(), average="samples")
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataloaders['size']
epoch_acc = (running_corrects) / dataloaders['size']
f1all = f1_running_score / b_nr
if phase == 'train':
tloss.append(epoch_loss)
tacc.append(epoch_acc)
if phase == 'val':
vloss.append(epoch_loss)
vacc.append(epoch_acc)
f1score.append(f1all)
# print(dataset_sizes[phase],epoch_acc)
# print(type(epoch_loss),type(epoch_acc))
print('{} Loss: {:.4f} Acc: {:.4f} F1: {:.4f}'.format(
phase, epoch_loss, epoch_acc, f1all))
print('-' * 10)
if valloader_for_train and phase == "train":
# Iterate over data.
for inputs, labels in valloader_for_train['data']:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
outputcpu = outputs.cpu()
preds = np.heaviside(outputcpu.detach().numpy(), 0)
loss = criterion.loss_calculate(outputs, labels.type(
torch.float), model, initial_model)
running_loss += loss.item() * inputs.size(0)
running_corrects += ((torch.sum(torch.from_numpy(preds).to(device)
== labels.data)).item() / n_classes)
epoch_loss = running_loss / valloader_for_train['size']
epoch_acc = (running_corrects) / valloader_for_train['size']
print('{} Val Loss: {:.4f} Val Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
print('-' * 10)
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
#print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
# model.load_state_dict(best_model_wts)
return model, [tloss, tacc, vloss, vacc, f1score]