forked from Karel911/TRACER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
55 lines (43 loc) · 1.71 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import pprint
import random
import warnings
import torch
import numpy as np
from trainer import Trainer, Tester
from inference import Inference
from config import getConfig
warnings.filterwarnings('ignore')
args = getConfig()
def main(args):
print('<---- Training Params ---->')
pprint.pprint(args)
# Random Seed
seed = args.seed
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if use multi-GPU
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if args.action == 'train':
save_path = os.path.join(args.model_path, args.dataset, f'TE{args.arch}_{str(args.exp_num)}')
# Create model directory
os.makedirs(save_path, exist_ok=True)
Trainer(args, save_path)
elif args.action == 'test':
save_path = os.path.join(args.model_path, args.dataset, f'TE{args.arch}_{str(args.exp_num)}')
datasets = ['DUTS', 'DUT-O', 'HKU-IS', 'ECSSD', 'PASCAL-S']
for dataset in datasets:
args.dataset = dataset
test_loss, test_mae, test_maxf, test_avgf, test_s_m = Tester(args, save_path).test()
print(f'Test Loss:{test_loss:.3f} | MAX_F:{test_maxf:.4f} '
f'| AVG_F:{test_avgf:.4f} | MAE:{test_mae:.4f} | S_Measure:{test_s_m:.4f}')
else:
save_path = os.path.join(args.model_path, args.dataset, f'TE{args.arch}_{str(args.exp_num)}')
print('<----- Initializing inference mode ----->')
Inference(args, save_path).test()
if __name__ == '__main__':
main(args)