-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpy_omp2.py
228 lines (188 loc) · 7.12 KB
/
py_omp2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# ######### OMP analysis main program version 2 ###################
# Function calls used: qwt2.m qwt_tst.m nansum.m (Philip Morgan, CSIRO)
# sw_ptmp sw_dens0.m (Philip Morgan, CSIRO) may be called for some data files
# sw_dist.m (Philip Morgan, CSIRO) is called through the contour2 call
import scipy.io
import numpy as np
import netCDF4 as nc
import math
import pyroms
import matplotlib.pyplot as plt
from omp2 import omp2
from collections import Counter
import datetime as dt
import matplotlib.dates as pltd
def qwt2(wm_row,ict):
# WATER MASS ID VALUES
wm = ('PSA', 'PSA', 'PEW', 'PEW', 'NPCW', 'NPCW')
# WATER TYPE MATRIX
# lower PSA
# upper PSA
# lower PEW
# upper PEW
# lower NPCW
# upper NPCW
# The following lines define the water types. The order of parameters is
# Note: potential vorticity is multiplied by 10*8.
wts=np.array(( \
# PTEMP SALT OXY PO4 NO3 SILICATE mass pvort
( 8.87, 33.59, 3.58, 1.72, 0.0, 23.20, 1.0, 0.0),\
(11.91, 33.46, 5.44, 0.90, 0.0, 6.91, 1.0, 0.0),\
( 7.66, 34.32, 0.70, 2.86, 0.0, 55.10, 1.0, 0.0),\
(10.26, 34.07, 2.39, 2.00, 0.0, 25.98, 1.0, 0.0),\
( 6.25, 34.13, 1.21, 2.81, 0.0, 63.11, 1.0, 0.0),\
( 9.37, 33.92, 3.66, 1.65, 0.0, 20.78, 1.0, 0.0)))
G1=np.transpose(wts[wm_row,:])
allsize = wts.shape
return G1, wm, allsize
def sw_dist(lat,lon,units):
# -----------------
# DEFINE CONSTANTS
# -----------------
DEG2RAD = (2*math.pi/360)
RAD2DEG = 1/DEG2RAD
DEG2MIN = 60
DEG2NM = 60
NM2KM = 1.8520 # Defined in Pond & Pickard p303.
npositions = len(lat)
dlon = np.diff(lon)
if any(abs(dlon)>180):
flag = np.where(abs(dlon)>180)[0]
for ii in flag:
dlon[ii]= -np.sign(dlon[ii]) * (360 - abs(dlon[ii]))
latrad = abs(lat*DEG2RAD)
temp_vals = (latrad[1:]+latrad[:-1])/2.
dep = np.cos(temp_vals.squeeze()) * dlon
dlat = np.diff(lat.squeeze())
dist = DEG2NM*np.sqrt(dlat**2 + dep**2) # in n.miles
if units == 'km': # defaults to n.miles
dist = dist * NM2KM
# CALCUALTE ANGLE TO X AXIS
#phaseangle = np.angle(dep+dlat*np.sqrt(-1))*RAD2DEG
return dist #,phaseangle
#############################################
# OMP2: Python edition
#############################################
print ' '
print 'OMP Analysis version 2 (March 1999)'
print '=================================== '
print ' '
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Originally from incontr2:
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
OMP = 'cla' # classical OMP analysis
# data location
# MACBOOK FILES:
dataset = '/Users/elizabethdrenkard/TOOLS/omp2/scripts/CalCOFI_LINE_093.3.npy'
dataset = '/Users/elizabethdrenkard/TOOLS/omp2/scripts/CalCOFI_LINE_080.0.npy'
# SWFSC FILES:
# dataset = '/Users/liz.drenkard/TOOLS/omp2/scripts/CalCOFI_LINE_093.3.npy'
# dataset = '/Users/liz.drenkard/TOOLS/omp2/scripts/CalCOFI_LINE_080.0.npy'
# data limitations
selection= '(pdens>=23) & (pdens<=28)'# & (press>300) & (press<600)'
# Select/deselect potential vorticity by setting switchpot to 'y' or 'n':
switchpot = 'n'
# WEIGHTS FOR VARIABLES
weightset='testwght.npy'
# number of water masses to be included in the analysis
wm = 3
# Select the water type numbers (row in the water type matrix)
qwt_pos = [0,1,2,3,5]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Loading .npy files into python
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
mat_dat=np.load(dataset).item()
globals().update(mat_dat)
weight_dat=np.load(weightset).item()
globals().update(weight_dat)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Variables available for/ to use in analysis
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# variable indices:
# 1: latitude
# 2: longitude
# 3: pressure
# 4: salinity
# 5: potential temperature
# 6: oxygen
# 7: phosphate
# 8: nitrate
# 9: silicate
#10: potential vorticity
#11: temperature
# NOTE: For historical reasons the two columns mass conservation and potential vorticity are
# swapped in the program so that mass conservation is always the last column, after potential vorticity.
# The arrangement of the water type matrix and the weight vector thus differs from the description
# in the user manual. This should not be of concern but has to be watched when changing the code.
# ORIGINAL
esx = np.array((1,1,1,1,1,1,1,0,1,0,0))
# Read the weight and Redfield ratio file
# Check which weights are needed and reset the diagonal:
print Wx.shape
A = np.diag(Wx)
A.setflags(write=1)
A1 = A[7] # change order of weights so that mass conservation is last
A[7] = A[6]
A[6] = A1
ratio = ratio.squeeze()
# MANUALLY SET A
A[4] = 0
ratio[4] = -99999 # no nitrate weight if no nitrate
A[6] = 0
ratio[6] = -99999 # no pot. vorticity weight if not needed
statind = np.where(A>0)[0]
Wx = np.diag(A[statind])
statind = np.where(ratio>-99999)[0]
redfrat = ratio[statind] # Redfield ratio for selected variables only
print ' '
# End of if statements for weights and Redfield ratio
G0,wmnames,i = qwt2(qwt_pos,0)
wm_index = []
wm_ind0 = []
wm_ind1 = []
j = 0
print ' '
tit_index = []
for i in range(len(qwt_pos)):
wm_ind1 = wmnames[qwt_pos[i]]
k = (wm_ind0==wm_ind1)
if not k:
j = j+1
tit_index.extend([wmnames[qwt_pos[i]]])
wm_ind0 = wm_ind1
wm_index.extend([j])
nr_of_wm = wm_index[len(wm_index)-1]
# PTEMP, SALT, OXYGEN, PHOS, SI, MASS
i = (0,1,2,3,5,6)
G1 = G0[i,:]
# SELECT STATIONS
stations = [26.7,28,30,35,40,45,50,55,60,70,80,90,100,110,120] #LINE 93.3
stations = [51,55,60,70,80,90,100] #LINE 80.0
nsta=len(stations)
surf_frac = np.array([], dtype=np.int64).reshape(0,wm,nsta)
cruise_dates = []
for yr in range(1980,2017+1):
Iy = np.where(np.array(mat_dat['YEAR'])==yr)
if len(Iy[0])>30:
mons = np.array(list(set(np.array(mat_dat['MONTH'])[Iy[0]])))
for mon in mons[(mons>2) & (mons<7)]:
print yr, mon
I = np.where((np.array(mat_dat['YEAR'])==yr) & (np.array(mat_dat['MONTH'])==mon))
stats = np.array(mat_dat['STATION'])[I[0]]
lat = np.array(mat_dat['LAT'])[I[0]]
lon = np.array(mat_dat['LONG'])[I[0]]
ptemp = np.array(mat_dat['PTEMP'])[I[0]]
sal = np.array(mat_dat['SALINITY'])[I[0]]
pdens = np.array(mat_dat['PDENS'])[I[0]]
oxy = np.array(mat_dat['OXYGEN'])[I[0]]
ph = np.array(mat_dat['PHOSPHATE'])[I[0]]
si = np.array(mat_dat['SILICATE'])[I[0]]
press = np.array(mat_dat['PRESS'])[I[0]]
dist = sw_dist(lat.squeeze(),lon.squeeze(),'km')
# This is the main part of it all: The call to omp2.m which does the analysis
surf_frac = np.concatenate((surf_frac,\
omp2(OMP,nr_of_wm,tit_index,qwt_pos,wmnames,Wx,lat,switchpot,selection,stations,stats,yr,mon,lon,esx,\
press,sal,oxy,ptemp,pdens,ph,si,G1,wm_index).reshape(1,wm,nsta)),axis=0)
cruise_dates = np.append(cruise_dates,pltd.date2num(dt.datetime(yr,mon,1)))
# SAVE variables as file for plotting figures
np.savez('water_mass_fractions_200m',surf_frac,cruise_dates)