-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontour2.py
87 lines (78 loc) · 2.81 KB
/
contour2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# This routine contours water mass content calculated
# by omp2.m
#
# NOTES: 1. This routine is called from omp2.m on request.
# 2. To use contourp2.m as a separate call from the
# command window you have to run omp2.m first
# and keep all variables in the workspace.
#
# ---------------------------------------------
# CALL: sw_dist.m form CSIRO seawater package
# external variables required: ctpara tit_str A lat long press
#
# ---------------------------------------------
# This program is part of the OMP package from:
# GEOMAR
# Helmholtz Centre for Ocean Res. Kiel FIAMS, Flinders University
# J. Karstensen Matthias Tomczak
# Duesternbrooker Weg 20 GPO Box 2100
# 24106 Kiel Adelaide, SA
# Germany Australia
#
# BUGS: [email protected]
# or [email protected]
# --------------------------------------------
def contour2(ctpara, tit_str, A, lat, lon, press):
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
from sw_dist import sw_dist
# select parameter to be plotted:
para=A[ctpara,:]*100
# calculate distance between stations
dist = sw_dist(lat,lon,'km')
#if dist.size[0]>1:
# dist=dist'
#end
cumdist=np.append(0, np.cumsum(dist))
#check for duplicates and separate them by 0.5 m.
for i in range(1,len(press)):
if ((cumdist[i-1] == cumdist[i]) & (press[i-1] == press[i])):
press[i-1] = press[i-1] - 0.5
# end
#end
# create regular grid:
# XI=np.linspace(min(cumdist),max(cumdist),20)
# YI=np.linspace(min(press),max(press),20)
XI = cumdist
YI = np.linspace(min(press),max(press),50)
print YI
X,Y = np.meshgrid(XI, YI)
# remove NaN do apply griddata.m
press1=press[~np.isnan(para)].squeeze()
cumdist1=cumdist[~np.isnan(para)].squeeze()
para1=para[~np.isnan(para)]
# interpolate to regular grid:
points = np.column_stack((cumdist1, press1))
para2=griddata(points,para1,(X,Y),method='cubic')
levs= np.linspace(0, 100.0, 50, endpoint=True)
fig, ax = plt.subplots(figsize=(12,4))
C = ax.contourf(X,Y,para2,levs,extend = 'both')
C.cmap.set_under(C.cmap.colors[0])
C.cmap.set_over(C.cmap.colors[-1])
cb = plt.colorbar(C,ticks=[0,20,40,60,80,100])
#plt.clabel(C, inline=1, fontsize=10)
#clabel(C,[0 20 40 60 80])
#colormap gray
#axis ij
plt.plot(cumdist,press,'ko',markersize=2)
#caxis([-50 100])
#set(gca,'position',[.1 .1 .85 .5])
#ax.invert_yaxis()
ax.set_ylim([10,500])
ax.invert_yaxis()
ax.set_xlabel('distance (km)')
ax.set_ylabel('pressure (dbar)')
tit_text = tit_str + ' water mass content (percent)'
plt.title(tit_text)
#set(gca,'box','on')