-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprocess_experiment.py
executable file
·429 lines (387 loc) · 17.9 KB
/
process_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
#!/usr/bin/env python
# amnonscript
import argparse
import sys
import os
import re
from collections import defaultdict
import subprocess
import logging
import numpy as np
import get_sra
import get_region
from utils import iterfastaseqs
__version__ = "0.1"
def rev_comp_fasta(infile, outdir, reverse=True, complement=True):
if not os.path.exists(outdir):
os.makedirs(outdir)
outfile = os.path.join(outdir, os.path.basename(infile))
logging.debug('revcomp file %s into %s' % (infile, outfile))
with open(outfile, 'w') as ofl:
for cseq, chead in iterfastaseqs(infile):
if complement:
cseq = cseq.lower()
cseq = cseq.replace('a', 'T')
cseq = cseq.replace('c', 'G')
cseq = cseq.replace('g', 'C')
cseq = cseq.replace('t', 'A')
cseq = cseq.upper()
if reverse:
cseq = cseq[::-1]
ofl.write('>' + chead + '\n')
ofl.write(cseq + '\n')
def trim_fasta(infile, outdir, ltrim_len=1):
'''Left trim fasta file to (removing ltrim_len first nucleotides and store in outdir
'''
if not os.path.exists(outdir):
os.makedirs(outdir)
outfile = os.path.join(outdir, os.path.basename(infile))
logging.debug('ltrim file %s into %s len %d' % (infile, outfile, ltrim_len))
with open(outfile, 'w') as ofl:
for cseq, chead in iterfastaseqs(infile):
ofl.write('>' + chead + '\n')
ofl.write(cseq[ltrim_len:] + '\n')
def test_fasta_file(files, base_dir=None, primers={'AGAGTTTGATC[AC]TGG[CT]TCAG': 'v1', 'CCTACGGG[ACGT][CGT]GC[AT][CG]CAG': 'v3', 'GTGCCAGC[AC]GCCGCGGTAA': 'v4', 'GTAAAAGTCGTAACAAGG': 'ITS5', 'GTAAAAGTCGTAACAAGGTTTC': 'ITS1F', 'TCCGTAGGTGAACCTGCGG': 'ITS1'}, max_start=25, min_primer_len=10, num_reads=1000, min_fraction=0.25, min_files_fraction=0.1):
'''Check if the fasta file starts with one of a given set of primers.
Parameters
----------
filename: str
the fasta file name to test
base_dir: str or None, optional
the directory where the files reside, or None to assume exact (full path) file names in files
primers: dict of {primer(str): region_name(str)}, optional
the primers to test for
max_start: int, optional
maximal start position for the primer (i.e. do not return if primer starts after position max_start)
min_primer_len: int, optional
trim primers to keep only min_primer_len last chars
num_reads: int, optional
the number of reads in the fasta file to process
min_fraction: float, optional
need at least min_fraction sequence matches in order to return the primer
Returns
-------
primer: str or None
the primer identified as maximal (if >min_fraction matches in tested reads)
primer_name: str or None
the name of the primer region identified
'''
# attach the base_dir if needed
logging.debug('Testing %d files for %d primers' % (len(files), len(primers)))
if base_dir is not None:
files = [os.path.join(base_dir, x) for x in files]
# trim the primers if needed
if min_primer_len is not None:
logging.debug('Trimming primers before test to length %d' % min_primer_len)
new_primers = {}
for k, v in primers.items():
pos = len(k)
numchars = 0
newp = ''
while True:
if numchars >= min_primer_len:
break
pos = pos - 1
if pos < 0:
break
if k[pos] != ']':
newp = k[pos] + newp
numchars += 1
continue
while k[pos] != '[':
newp = k[pos] + newp
pos = pos - 1
newp = k[pos] + newp
numchars += 1
new_primers[newp] = v
primers = new_primers
logging.debug('Trimmed primers are: %s' % primers)
# scan the files
all_matches = defaultdict(float)
for cfile in files:
matches = defaultdict(int)
num_tested = 0
for cseq, chead in iterfastaseqs(cfile):
for cprimer in primers.keys():
ccseq = cseq[:max_start + len(cprimer)]
match = re.search(cprimer, ccseq)
if match is not None:
matches[cprimer] += 1
num_tested += 1
if num_tested > num_reads:
break
if len(matches) > 0:
max_primer = max(matches, key=matches.get)
match_fraction = matches[max_primer] / num_tested
if match_fraction > min_fraction:
all_matches[max_primer] += 1
if len(all_matches) > 0:
logging.debug('matches per primer: %s' % all_matches)
maxregion = max(all_matches, key=all_matches.get)
logging.debug('best matching region is %s' % maxregion)
if all_matches[maxregion] / len(files) >= min_files_fraction:
logging.debug('enough matches found for primer %s: %s' % (maxregion, all_matches[maxregion]))
return maxregion, primers[maxregion]
else:
logging.debug('not enough matches per primer. details: %s' % primers)
else:
logging.debug('no matches found for any primer')
logging.info('No match for any of %d primers found' % len(primers))
return None, None
def test_read_length(files, base_dir=None, num_reads=1000, prctile=75):
'''get the typical read length for files
Parameters
----------
base_dir: str or None, optional
the directory where the files reside, or None to assume exact (full path) file names in files
files: list of str
the fasta files to test
num_reads: int, optional
the number of reads in the fasta file to process
prctile: float, optional
the percentile to use as the typical read length
Returns
-------
read_length: int
the read length
'''
if base_dir is not None:
files = [os.path.join(base_dir, x) for x in files]
all_reads = []
for cfile in files:
num_tested = 0
for cseq, chead in iterfastaseqs(cfile):
all_reads.append(len(cseq))
num_tested += 1
if num_tested > num_reads:
break
return int(np.percentile(all_reads, prctile))
def test_kmer_head_region(files, base_dir=None, kmers={'v4': ['TACG'], 'v3': ['TGGG', 'TGAG'], 'v1': ['GACG', 'GATG', 'ATTG'], 'ITS5': ['TTTC','TCTC']}, num_reads=1000, min_fraction=0.5, min_files_fraction=0.1, ltrim=0):
'''Test if a fasta file starts with known region k-mers
Parameters
----------
infile: str
name of fasta file
base_dir: str or None, optional
the directory where the files reside, or None to assume exact (full path) file names in files
kmers: dict of {region_name(str): [kmers(str)]}
the kmers expected to begin each primer region
get the values using ~/scripts/count_kmer.py -d v1
num_reads: int
the maximal number of reads per fileto test
min_fraction: float
the minimal expected fraction of reads in the region starting with the kmers (summed over all kmers of the region)
min_files_fraction: float
the minimal fraction of files positive for the primer in order to identify the experiment
ltrim: int, optional
position of first nucleotide to start with. 0 to start from beginning
Returns
-------
region: str or None
the matching region or None if no region
'''
if base_dir is not None:
files = [os.path.join(base_dir, x) for x in files]
file_primers = defaultdict(float)
# get the length of the kmers
kmer_lens = [len(x[0]) for x in kmers.values() if len(x) > 0]
if len(np.unique(kmer_lens)) > 1:
raise ValueError('kmers must be of same length, but we get: %s' % kmers)
kmer_len = kmer_lens[0]
logging.debug('testing kmer head using %d heads for region on %d files:' % (len(kmers),len(files)))
for cfile in files:
logging.debug(cfile)
num_tested = 0
kmer_dist = defaultdict(float)
for cseq, chead in iterfastaseqs(cfile):
cseq = cseq[ltrim:ltrim + kmer_len]
for cregion, ckmers in kmers.items():
if cseq in ckmers:
kmer_dist[cregion] += 1
num_tested += 1
if num_tested > num_reads:
break
if len(kmer_dist) > 0:
for k, v in kmers.items():
kmer_dist[k] = kmer_dist[k] / num_tested
maxregion = max(kmer_dist, key=kmer_dist.get)
if kmer_dist[maxregion] > min_fraction:
file_primers[maxregion] += 1
if len(file_primers) == 0:
logging.info('no exact regions identified in files')
return None
maxregion = max(file_primers, key=file_primers.get)
if file_primers[maxregion] / len(files) > min_files_fraction:
return maxregion
return None
def process_experiment(infile, sra_path, reads_dir=None, max_test=10, skip_get=False, seq_len=150, skip_16s_check=False, skip_region=False, deblur_path=None, num_threads=1, max_primer_start=25, skip_exact=False, fastq=False, exp_type='16s', min_primer_len=10):
'''download the Sra table, convert to known region, and deblur
Parameters
----------
infile: str
name of the input SraRunTable (tab or comma delimited)
reads_dir: str, optional
name of the output fasta directory for the sra download
max_test: int, optional
maximal number of files to check for primer/region
skip_get: bool, optional
True to skip the SRA downloading step (assumes fasta files are in the fasta/ dir)
seq_len: int, optional
the length to trim each sequence after primer removal (actual length is min(seq_len, actual length))
skip_16s_check: bool, optional
True to skip the validation step that the sample is not WGS before downloading
skip_region:bool, optional
True to skip the region validation step (always process initial fasta reads)
deblur_path: str or None, optional
if not None, path to the directory containined the preprocessed artifacts/repseqs files for deblur
(88_otus.bursttrie_0.dat, 88_otus.kmer_0.dat, 88_otus.pos_0.dat, 88_otus.stats, artifacts.bursttrie_0.dat, artifacts.kmer_0.dat, artifacts.pos_0.dat, artifacts.stats)
if None, deblur will preprocess
num_threads: int, optional
the number of threads to run deblur with
max_primer_start: int, optional
the maximal allowed offset for the primer within the reads (so primer does not appear in the middle of the sequence - i.e. v4 in v34)
skip_exact: bool, optional
if True, skip the exact region match test (no trimming) - assume it is not exact
fastq: bool, optional
if True, download the fastq files instead of fasta
exp_type: str, optional
the type of experiment ("16s" or "its")
min_primer_len: int, optional
the length of the primers to keep (default 10)
'''
if exp_type == '16s':
primers={'AGAGTTTGATC[AC]TGG[CT]TCAG': 'v1', 'CCTACGGG[ACGT][CGT]GC[AT][CG]CAG': 'v3', 'GTGCCAGC[AC]GCCGCGGTAA': 'v4'}
kmers={'v4': ['TACG'], 'v3': ['TGGG', 'TGAG'], 'v1': ['GACG', 'GATG', 'ATTG'], 'v4missingT': ['ACGGA','ACGTA']}
# v4missingT are reads that start at position 2 (i.e. no T at position 1)
logging.info('16s experiment. will for the following regions: %s' % list(kmers.keys()))
elif exp_type == 'its':
primers = {'TTGTACACA': 'ITS1-30F', 'GAGGAAGTAA': 'ITS1F', 'GTAACAAGG[ACGT][ACGT][ACGT][ACGT]': 'ITSF/ITS5', 'GAACCTGCGG': 'ITS1', 'GA[AG]GGATCA': 'BITS1', 'AAGAACGCAGC': 'ITS3', 'C[AG]A[AG]T[CT]TTTG[ACGT][ACGT]' : 'ITS86F', 'TTGAGCGTC': 'FSEQ'}
kmers={'ITS1-30F': ['XXXXX'], 'ITS1F': ['AAGTC'], 'ITSF/ITS5': ['CGTAG','CGTTG'], 'ITS1': ['AAGGA'], 'BITS1': ['XXXXX'], 'ITS3': ['GAAAT'], 'ITS86F': ['CGCAC'], 'FSEQ': ['XXXXX']}
min_primer_len = 15
logging.info('ITS experiment. will for the following regions: %s' % kmers.keys())
else:
raise ValueError('unknown experiment type %s (use "16s" or "its")' % exp_type)
if reads_dir is None:
if fastq:
reads_dir = 'fastq'
else:
reads_dir = 'fasta'
# get all the fasta files
if not skip_get:
logging.info('processing sratable %s' % infile)
num_files = get_sra.GetSRA(infile, sra_path, skipifthere=True, outdir=reads_dir, skip_16s_check=skip_16s_check,fastq=fastq)
logging.info('downloaded %d files' % num_files)
else:
logging.info('skipping getting files from sra')
# check if known region / if we need to trim primer
files = [f for f in os.listdir(reads_dir) if f.endswith('.fasta') or f.endswith('fastq')]
print('found %d files' % len(files))
logging.debug('found %d files' % len(files))
found_it = False
if not skip_region:
logging.info('** testing region')
if len(files) == 0:
raise ValueError('no fasta files found in %s' % reads_dir)
if len(files) > max_test:
test_files = [files[x] for x in np.random.permutation(len(files))[:max_test]]
else:
test_files = files
logging.info('testing in representative set of %d files' % len(test_files))
if not skip_exact:
logging.info('testing exact region match')
# test if the sequences are of some known region
region = test_kmer_head_region(test_files, reads_dir, kmers=kmers)
else:
region = None
if region is not None:
logging.info('region is %s with exact match. No primer trimming needed' % region)
found_it = True
else:
logging.info('no exact region match')
# test if sequences contain known primer
logging.info('testing primer match within %d first bases' % max_primer_start)
match_primer, match_primer_name = test_fasta_file(test_files, reads_dir, max_start=max_primer_start, primers=primers, min_primer_len=min_primer_len)
# no match for primer - let's try reverse-complement
if match_primer is None:
logging.info('no match for primer.')
logging.info('trying reverse complement')
rc_dir = 'revcomp'
for cfile in files:
rev_comp_fasta(os.path.join(reads_dir, cfile), rc_dir)
reads_dir = rc_dir
logging.info('testing exact region match or reverse complement')
region = test_kmer_head_region(test_files, reads_dir, kmers=kmers)
if region is not None:
logging.info('Found exact region %s after reverse complement')
found_it = True
else:
logging.info('testing primer match within %d first bases for reverse complement' % max_primer_start)
# test if sequences contain known primer
match_primer, match_primer_name = test_fasta_file(test_files, reads_dir, max_start=max_primer_start, primers=primers, min_primer_len=min_primer_len)
# if still not found, maybe need to skip first 1-5 bases (short forward primer....)
if match_primer is None:
logging.info('no match for primer. trying short left trimming and region match')
for ctrim in range(5):
region = test_kmer_head_region(test_files, reads_dir, ltrim=ctrim + 1, kmers=kmers)
if region is not None:
logging.info('Found match after short left trimming. Need %d left trimming. region is %s' % (ctrim, region))
trimdir = 'trimmed'
for cfile in files:
trim_fasta(cfile, trimdir, ltrim_len=ctrim)
reads_dir = trimdir
found_it = True
# if found matching primer in sequences, trim it
if match_primer is not None:
logging.info('trimming with primer %s for region %s' % (match_primer, match_primer_name))
trim_dir = 'trim'
get_region.get_region(reads_dir, outputname=trim_dir, fprimer=match_primer, skip_reverse=True)
reads_dir = trim_dir
logging.info('finished trimming')
found_it = True
# after all these tries didn't identify reads as coming from any known region
if not found_it:
logging.error('**** no match for any primer or region. please checj manually ****')
raise ValueError('No matching regions/primers. please check manually!')
# check the length of typical reads
read_len = test_read_length(files, reads_dir)
logging.info('typical read length = %d' % read_len)
if read_len < 100:
raise ValueError('Read length %d too short' % read_len)
read_len = np.min([read_len, seq_len])
logging.info('deblurring')
# deblur workflow --seqs-fp fasta --output-dir deblur -w -t 150 -O 32 --min-reads 10 --pos-ref-db-fp /home/amam7564/data/icu/deblur/deblur_working_dir/88_otus --neg-ref-db-fp /home/amam7564/data/icu/deblur/deblur_working_dir/artifacts
params = []
# params += ['qsub', '-d', '$PWD', '-V', '-m', 'abe', '-M', '[email protected]', '-j', 'eo', '-e', 'process.err', '-l', 'walltime=48:00:00,nodes=1:ppn=32,mem=250gb', '-N', 'process']
params += ['deblur', 'workflow']
params += ['--seqs-fp', reads_dir]
params += ['--output-dir', 'deblur']
params += ['-w', '-t', str(read_len)]
params += ['-O', str(num_threads), '--min-reads', '10']
if deblur_path is not None:
params += ['--pos-ref-db-fp', os.path.join(deblur_path, '88_otus')]
params += ['--pos-ref-db-fp', os.path.join(deblur_path, 'artifacts')]
subprocess.call(params)
logging.info('done')
def main(argv):
parser = argparse.ArgumentParser(description='Process experiment version ' + __version__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-i', '--input', help='name of input SraRunTable file (with the sample accessions')
parser.add_argument('-p', '--sra-path', help='path to the sratoolkit binary', default='/home/amam7564/bin/sratoolkit.3.0.0-centos_linux64/bin/')
parser.add_argument('-t', '--trim-length', help='length to trim seqs after primer removal', default=150, type=int)
parser.add_argument('--skip-16s-check', help='download also samples that seem to be non-16s', action='store_true')
parser.add_argument('--skip-get', help='if set, skip getting the fasta files from SRA', action='store_true')
parser.add_argument('--fastq', help='if set, get FASTQ instead of FASTA from SRA', action='store_true')
parser.add_argument('--skip-region', help='if set, skip validating/trimming region for primers (just process fasta)', action='store_true')
parser.add_argument('--skip-exact', help='if set, assume the sequence is not an exact region match (force primer checking)', action='store_true')
parser.add_argument('--max-primer-start', help='the maximal offset (from read start) for primer end', default=25, type=int)
parser.add_argument('--log-file', help='log file for the run', default='process_experiment.log')
parser.add_argument('--log-level', help='level of log file msgs (10=debug, 20=info ... 50=critical', type=int, default=20)
parser.add_argument('--deblur-path', help='location of deblur pre-compiled artifacts/rep seqs')
parser.add_argument('--num-threads', help='number of threads to run for deblur', default=1)
parser.add_argument('--exp-type', help='type of experiment (16s or its)', default='16s')
args = parser.parse_args(argv)
print('logging to %s' % args.log_file)
logging.basicConfig(filename=args.log_file, filemode='w', format='%(asctime)s:%(levelname)s:%(message)s', level=args.log_level, datefmt='%d/%m/%Y %H:%M:%S')
logging.info('process_experiment started')
process_experiment(infile=args.input, sra_path=args.sra_path, skip_get=args.skip_get, seq_len=args.trim_length, skip_16s_check=args.skip_16s_check, skip_region=args.skip_region, deblur_path=args.deblur_path, num_threads=args.num_threads, max_primer_start=args.max_primer_start, skip_exact=args.skip_exact, fastq=args.fastq, exp_type=args.exp_type)
if __name__ == "__main__":
main(sys.argv[1:])