-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_tdid.py
247 lines (211 loc) · 9.35 KB
/
train_tdid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
import torch.utils.data
import torchvision.models as models
import os
import sys
import importlib
import numpy as np
from datetime import datetime
import cv2
import time
from model_defs.TDID import TDID
from utils import *
from evaluation.coco_det_eval import coco_det_eval
import active_vision_dataset_processing.data_loading.active_vision_dataset as AVD
# load config
cfg_file = 'configAVD2' #NO FILE EXTENSTION!
cfg = importlib.import_module('configs.'+cfg_file)
cfg = cfg.get_config()
if cfg.DET4CLASS:
test_net = importlib.import_module('test_tdid_det4class').test_net
else:
test_net = importlib.import_module('test_tdid').test_net
def validate_and_save(cfg,net,valset,target_images, epoch, total_iterations):
'''
Test on validation data, and save a snapshot of model
'''
valloader = torch.utils.data.DataLoader(valset,
batch_size=1,
shuffle=True,
collate_fn=AVD.collate)
model_name = cfg.MODEL_BASE_SAVE_NAME + '_{}'.format(epoch)
net.eval()
all_results = test_net(model_name, net, valloader,
target_images, cfg.VAL_OBJ_IDS, cfg,
max_dets_per_target=cfg.MAX_DETS_PER_TARGET,
output_dir=cfg.TEST_OUTPUT_DIR,
score_thresh=cfg.SCORE_THRESH)
if len(all_results) == 0:
#coco code can't handle no detections?
m_ap = 0
else:
m_ap = coco_det_eval(cfg.VAL_GROUND_TRUTH_BOXES,
cfg.TEST_OUTPUT_DIR+model_name+'.json',
catIds=cfg.VAL_OBJ_IDS)
save_name = os.path.join(cfg.SNAPSHOT_SAVE_DIR,
(cfg.MODEL_BASE_SAVE_NAME+
'_{}_{}_{:1.5f}_{:1.5f}.h5').format(epoch,
total_iterations, epoch_loss/epoch_step_cnt,m_ap))
save_net(save_name, net)
print('save model: {}'.format(save_name))
net.train()
net.features.eval() #freeze batch norm layers?
#prepare target images (gather paths to the images)
target_images ={}
if cfg.PYTORCH_FEATURE_NET:
target_images = get_target_images(cfg.TARGET_IMAGE_DIR,cfg.NAME_TO_ID.keys())
else:
raise NotImplementedError
#would need to add new normalization to get_target_images, and utilts, etc
#make sure only targets that have ids, and have target images are chosen
train_ids = check_object_ids(cfg.TRAIN_OBJ_IDS, cfg.ID_TO_NAME,target_images)
cfg.TRAIN_OBJ_IDS = train_ids
val_ids = check_object_ids(cfg.VAL_OBJ_IDS, cfg.ID_TO_NAME,target_images)
cfg.VAL_OBJ_IDS = val_ids
if train_ids==-1 or val_ids==-1:
print('Invalid IDS!')
sys.exit()
print('Setting up training data...')
train_set = get_AVD_dataset(cfg.AVD_ROOT_DIR,
cfg.TRAIN_LIST,
train_ids,
max_difficulty=cfg.MAX_OBJ_DIFFICULTY,
fraction_of_no_box=cfg.FRACTION_OF_NO_BOX_IMAGES)
valset = get_AVD_dataset(cfg.AVD_ROOT_DIR,
cfg.VAL_LIST,
val_ids,
max_difficulty=cfg.MAX_OBJ_DIFFICULTY,
fraction_of_no_box=cfg.VAL_FRACTION_OF_NO_BOX_IMAGES)
trainloader = torch.utils.data.DataLoader(train_set,
batch_size=cfg.BATCH_SIZE,
shuffle=True,
num_workers=cfg.NUM_WORKERS,
collate_fn=AVD.collate)
print('Loading network...')
net = TDID(cfg)
if cfg.LOAD_FULL_MODEL:
load_net(cfg.FULL_MODEL_LOAD_DIR + cfg.FULL_MODEL_LOAD_NAME, net)
else:
weights_normal_init(net, dev=0.01)
if cfg.USE_PRETRAINED_WEIGHTS:
net.features = load_pretrained_weights(cfg.FEATURE_NET_NAME)
net.features.eval()#freeze batchnorms layers?
if not os.path.exists(cfg.SNAPSHOT_SAVE_DIR):
os.makedirs(cfg.SNAPSHOT_SAVE_DIR)
if not os.path.exists(cfg.META_SAVE_DIR):
os.makedirs(cfg.META_SAVE_DIR)
#put net on gpu
net.cuda()
net.train()
#setup optimizer
params = list(net.parameters())
optimizer = torch.optim.SGD(params, lr=cfg.LEARNING_RATE,
momentum=cfg.MOMENTUM,
weight_decay=cfg.WEIGHT_DECAY)
# things to keep track of during training
train_loss = 0
t = Timer()
t.tic()
total_iterations = 1
save_training_meta_data(cfg,net)
print('Begin Training...')
for epoch in range(1,cfg.MAX_NUM_EPOCHS+1):
target_use_cnt = {}
for cid in train_ids:
target_use_cnt[cid] = [0,0]
epoch_loss = 0
epoch_step_cnt = 0
for step,batch in enumerate(trainloader):
total_iterations += 1
if cfg.BATCH_SIZE == 1:
batch[0] = [batch[0]]
batch[1] = [batch[1]]
if type(batch[0]) is not list or len(batch[0]) < cfg.BATCH_SIZE:
continue
batch_im_data = []
batch_target_data = []
batch_gt_boxes = []
for batch_ind in range(cfg.BATCH_SIZE):
im_data=batch[0][batch_ind]
im_data=normalize_image(im_data,cfg)
gt_boxes = np.asarray(batch[1][batch_ind][0],dtype=np.float32)
if np.random.rand() < cfg.RESIZE_IMG:
im_data = cv2.resize(im_data,(0,0),fx=cfg.RESIZE_IMG_FACTOR,
fy=cfg.RESIZE_IMG_FACTOR)
if gt_boxes.shape[0] >0:
gt_boxes[:,:4] *= cfg.RESIZE_IMG_FACTOR
#if there are no boxes for this image, add a dummy background box
if gt_boxes.shape[0] == 0:
gt_boxes = np.asarray([[0,0,1,1,0]])
objects_present = gt_boxes[:,4]
objects_present = objects_present[np.where(objects_present!=0)[0]]
not_present = np.asarray([ind for ind in train_ids
if ind not in objects_present and
ind != 0])
#pick a target
if ((np.random.rand() < cfg.CHOOSE_PRESENT_TARGET or
not_present.shape[0]==0) and
objects_present.shape[0]!=0):
target_ind = int(np.random.choice(objects_present))
gt_boxes = gt_boxes[np.where(gt_boxes[:,4]==target_ind)[0],:-1]
gt_boxes[0,4] = 1
target_use_cnt[target_ind][0] += 1
else:#the target is not in the image, give a dummy background box
target_ind = int(np.random.choice(not_present))
gt_boxes = np.asarray([[0,0,1,1,0]])
target_use_cnt[target_ind][1] += 1
#get target images
target_name = cfg.ID_TO_NAME[target_ind]
target_data = []
for t_type,_ in enumerate(target_images[target_name]):
img_ind = np.random.choice(np.arange(
len(target_images[target_name][t_type])))
target_img = cv2.imread(target_images[target_name][t_type][img_ind])
if np.random.rand() < cfg.AUGMENT_TARGET_IMAGES:
target_img = augment_image(target_img,
do_illum=cfg.AUGMENT_TARGET_ILLUMINATION)
target_img = normalize_image(target_img,cfg)
batch_target_data.append(target_img)
batch_im_data.append(im_data)
batch_gt_boxes.extend(gt_boxes)
#prep data for input to network
target_data = match_and_concat_images_list(batch_target_data,
min_size=cfg.MIN_TARGET_SIZE)
im_data = match_and_concat_images_list(batch_im_data)
gt_boxes = np.asarray(batch_gt_boxes)
im_info = im_data.shape[1:]
im_data = np_to_variable(im_data, is_cuda=True)
im_data = im_data.permute(0, 3, 1, 2)
target_data = np_to_variable(target_data, is_cuda=True)
target_data = target_data.permute(0, 3, 1, 2)
# forward
net(target_data, im_data, im_info, gt_boxes=gt_boxes)
# if cfg.USE_ROI_LOSS_ONLY:
# loss = net.roi_cross_entropy_loss
# else:
# loss = net.loss
loss = net.loss
train_loss += loss.data[0]
epoch_step_cnt += 1
epoch_loss += loss.data[0]
# backprop and parameter update
optimizer.zero_grad()
loss.backward()
clip_gradient(net, 10.)
optimizer.step()
#print out training info
if step % cfg.DISPLAY_INTERVAL == 0:
duration = t.toc(average=False)
fps = step+1.0 / duration
log_text = 'step %d, epoch_avg_loss: %.4f, fps: %.2f (%.2fs per batch) ' \
'epoch:%d loss: %.4f tot_avg_loss: %.4f %s' % (
step, epoch_loss/epoch_step_cnt, fps, 1./fps,
epoch, loss.data[0],train_loss/(step+1), cfg.MODEL_BASE_SAVE_NAME)
print(log_text)
print(target_use_cnt)
if (not cfg.SAVE_BY_EPOCH) and total_iterations % cfg.SAVE_FREQ==0:
validate_and_save(cfg,net,valset,target_images,epoch,total_iterations)
######################################################
#epoch over
if cfg.SAVE_BY_EPOCH and epoch % cfg.SAVE_FREQ == 0:
validate_and_save(cfg,net,valset,target_images, epoch, total_iterations)