-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
42 lines (37 loc) · 1.38 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import glob
import cv2
import numpy as np
from keras.utils import to_categorical
from keras.preprocessing.image import ImageDataGenerator
import os
def generate_batches(path, batchSize):
while True:
files = glob.glob(path + '/*/*jpg')
for f in range(0, len(files), batchSize):
x = []
y = []
for i in range(f, f+batchSize):
if i < len(files):
img = cv2.imread(files[i])
x.append(cv2.resize(img, (224, 224)))
y.append(int(files[i].split('/')[1]))
yield (np.array(x), to_categorical(y, num_classes=10))
def generate_batches_with_augmentation(train_path, batch_size, validation_split, augmented_data):
train_datagen = ImageDataGenerator(
shear_range=0.2,
rotation_range=0.3,
zoom_range=0.1,
validation_split=validation_split)
train_generator = train_datagen.flow_from_directory(
train_path,
target_size=(224, 224),
batch_size=batch_size,
save_to_dir=augmented_data)
return train_generator
def create_folders(model_path, augmented_data):
if not os.path.exists(model_path):
os.mkdir(model_path)
if not os.path.exists(augmented_data):
os.mkdir(augmented_data)
if not os.path.exists("logs"):
os.mkdir("logs")