This document describes how to build Fuzz Introspector outside the OSS-Fuzz environment.
git clone https://github.com/ossf/fuzz-introspector
cd fuzz-introspector
# Get python dependencies
python3 -m venv .venv
. .venv/bin/activate
pip install -r requirements.txt
# Build custom clang with Fuzz introspector LLVM pass
./build_all.sh
cd tests
./build_simple_example.sh
cd simple-example-0/web
python3 -m http.server 8008
Will use sources cloned to /your/path/to/source
docker build -t "fuzz-introspector:Dockerfile" .
docker run --rm -it -v /your/path/to/source:/src fuzz-introspector:Dockerfile
git clone https://github.com/ossf/fuzz-introspector
# create virtual environment
python3 -m venv .venv
. .venv/bin/activate
pip install -r requirements.txt
Fuzz-introspector relies on an LTO LLVM pass and this requires us to build a custom Clang where the LTO pass is part of the compiler tool chain (see ossf#57 for more details on why this is needed).
To build the custom clang from the root of this repository:
mkdir build
cd build
# Build binutils
apt install texinfo
git clone --depth 1 git://sourceware.org/git/binutils-gdb.git binutils
mkdir build
cd ./build
../binutils/configure --enable-gold --enable-plugins --disable-werror
make all-gold
cd ../
# Build LLVM and Clang
git clone https://github.com/llvm/llvm-project/
cd llvm-project/
git checkout release/15.x
# Patch Clang to run fuzz introspector
../../frontends/llvm/patch-llvm.sh
cp -rf ../../frontends/llvm/include/llvm/Transforms/FuzzIntrospector/ ./llvm/include/llvm/Transforms/FuzzIntrospector
cp -rf ../../frontends/llvm/lib/Transforms/FuzzIntrospector ./llvm/lib/Transforms/FuzzIntrospector
cd ../
# Build LLVM and clang
mkdir llvm-build
cd llvm-build
cmake -G "Unix Makefiles" -DLLVM_ENABLE_PROJECTS="clang;compiler-rt" \
-DCMAKE_BUILD_TYPE=Debug \
-DLLVM_BINUTILS_INCDIR=../binutils/include \
-DLLVM_TARGETS_TO_BUILD="X86" ../llvm-project/llvm/
make llvm-headers
make -j5
Now we have two options, to run the fuzz introspector tools without collecting runtime coverage and doing it with collecting coverage. We go through each of the two options:
After having built the custom clang above, you build a test case:
# From the root of the fuzz-introspector repository
cd tests/simple-example-0
# Run compiler pass to generate *.data and *.data.yaml files
mkdir work
cd work
FUZZ_INTROSPECTOR=1 ../../../build/llvm-build/bin/clang -fsanitize=fuzzer -fuse-ld=gold -flto -g ../fuzzer.c -o fuzzer
# Run post-processing to analyse data files and generate HTML report
python3 ../../../src/main.py correlate --binaries_dir=.
python3 ../../../src/main.py report --target_dir=. --correlation_file=./exe_to_fuzz_introspector_logs.yaml
# The post-processing will have generated various .html, .js, .css and .png fies,
# and these are accessible in the current folder. Simply start a webserver and
# navigate to the report in your local browser (localhost:8008):
python3 -m http.server 8008
# From the root of the fuzz-introspector repository
cd tests/simple-example-0
# Run compiler pass to generate *.data and *.data.yaml files
mkdir work
cd work
# Run script that will build fuzzer with coverage instrumentation and extract .profraw files
# and convert those to .covreport files with "llvm-cov show"
../build_cov.sh
# Build fuzz-introspector normally
FUZZ_INTROSPECTOR=1 ../../../build/llvm-build/bin/clang -fsanitize=fuzzer -fuse-ld=gold -flto -g ../fuzzer.c -o fuzzer
# Run post-processing to analyse data files and generate HTML report
python3 ../../../src/main.py correlate --binaries_dir=.
python3 ../../../src/main.py report --target_dir=. --correlation_file=./exe_to_fuzz_introspector_logs.yaml
# The post-processing will have generated various .html, .js, .css and .png fies,
# and these are accessible in the current folder. Simply start a webserver and
# navigate to the report in your local browser (localhost:8008):
python3 -m http.server 8008
You can also use the build_all_projects.sh
and build_all_web_only.sh
scripts to control
which examples you want to build as well as whether you want to only build the web data.