diff --git a/README.md b/README.md index 1747d0e..5bb3500 100644 --- a/README.md +++ b/README.md @@ -39,337 +39,342 @@ ## Survey papers -- [Domain Generalization: A Survey](https://arxiv.org/abs/2103.02503) -Zhou, Kaiyang, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. -*arXiv preprint arXiv:2103.02503* (2021). +- [Domain Generalization: A Survey](https://arxiv.org/abs/2103.02503) +Zhou, Kaiyang, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. +*arXiv preprint arXiv:2103.02503* (2021). -- [Generalizing to Unseen Domains: A Survey on Domain Generalization](https://arxiv.org/abs/2103.03097) -Wang, Jindong, Cuiling Lan, Chang Liu, Yidong Ouyang, Wenjun Zeng, and Tao Qin. -*International Joint Conference on Artificial Intelligence* (**IJCAI**) (2021). +- [Generalizing to Unseen Domains: A Survey on Domain Generalization](https://arxiv.org/abs/2103.03097) +Wang, Jindong, Cuiling Lan, Chang Liu, Yidong Ouyang, Wenjun Zeng, and Tao Qin. +*International Joint Conference on Artificial Intelligence* (**IJCAI**) (2021). ## Research papers 2021

Machine learning venues

-- (**IB-IRM**) [Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization](https://arxiv.org/abs/2106.06607) -Ahuja, Kartik, Ethan Caballero, Dinghuai Zhang, Jean-Christophe Gagnon-Audet, Yoshua Bengio, Ioannis Mitliagkas, and Irina Rish. -*Neural Information Processing Systems* (**NeurIPS**) 2021. +- (**IB-IRM**) [Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization](https://arxiv.org/abs/2106.06607) +Ahuja, Kartik, Ethan Caballero, Dinghuai Zhang, Jean-Christophe Gagnon-Audet, Yoshua Bengio, Ioannis Mitliagkas, and Irina Rish. +*Neural Information Processing Systems* (**NeurIPS**) 2021. [[code]](https://github.com/ahujak/IB-IRM) -- (**MatchDG**) [Domain Generalization using Causal Matching](http://proceedings.mlr.press/v139/mahajan21b.html) -Mahajan, Divyat, Shruti Tople, and Amit Sharma. -*International Conference of Machine Learning* (**ICML**) (2021). +- (**MatchDG**) [Domain Generalization using Causal Matching](http://proceedings.mlr.press/v139/mahajan21b.html) +Mahajan, Divyat, Shruti Tople, and Amit Sharma. +*International Conference of Machine Learning* (**ICML**) (2021). [[code]](https://github.com/microsoft/robustdg) -- (**VBCLS**) [Domain Generalization under Conditional and Label Shifts via Variational Bayesian Inference](https://www.ijcai.org/proceedings/2021/122) -Liu, Xiaofeng, Bo Hu, Linghao Jin, Xu Han, Fangxu Xing, Jinsong Ouyang, Jun Lu, Georges EL Fakhri, and Jonghye Woo. -*International Joint Conference on Artificial Intelligence* (**IJCAI**) (2021). +- (**VBCLS**) [Domain Generalization under Conditional and Label Shifts via Variational Bayesian Inference](https://www.ijcai.org/proceedings/2021/122) +Liu, Xiaofeng, Bo Hu, Linghao Jin, Xu Han, Fangxu Xing, Jinsong Ouyang, Jun Lu, Georges EL Fakhri, and Jonghye Woo. +*International Joint Conference on Artificial Intelligence* (**IJCAI**) (2021). -- (**MixStyle**) [Domain Generalization with MixStyle](https://openreview.net/forum?id=6xHJ37MVxxp) -Zhou, Kaiyang, Yongxin Yang, Yu Qiao, and Tao Xiang. -*International Conference on Learning Representations* (**ICLR**) 2021. +- (**MixStyle**) [Domain Generalization with MixStyle](https://openreview.net/forum?id=6xHJ37MVxxp) +Zhou, Kaiyang, Yongxin Yang, Yu Qiao, and Tao Xiang. +*International Conference on Learning Representations* (**ICLR**) 2021. [[code]](https://github.com/KaiyangZhou/mixstyle-release) -- [The Risks of Invariant Risk Minimization](https://openreview.net/forum?id=BbNIbVPJ-42) -Rosenfeld, Elan, Pradeep Ravikumar, and Andrej Risteski. -*International Conference on Learning Representations* (**ICLR**) 2021. +- [The Risks of Invariant Risk Minimization](https://openreview.net/forum?id=BbNIbVPJ-42) +Rosenfeld, Elan, Pradeep Ravikumar, and Andrej Risteski. +*International Conference on Learning Representations* (**ICLR**) 2021. -- (**DomainBed**) [In Search of Lost Domain Generalization](https://openreview.net/forum?id=lQdXeXDoWtI) -Gulrajani, Ishaan, and David Lopez-Paz. -*International Conference on Learning Representations* (**ICLR**) 2021. +- (**DomainBed**) [In Search of Lost Domain Generalization](https://openreview.net/forum?id=lQdXeXDoWtI) +Gulrajani, Ishaan, and David Lopez-Paz. +*International Conference on Learning Representations* (**ICLR**) 2021. [[code]](https://github.com/facebookresearch/DomainBed) -- [Domain Generalization by Marginal Transfer Learning](https://www.jmlr.org/papers/volume22/17-679/17-679.pdf) -Blanchard, Gilles, Aniket Anand Deshmukh, Urun Dogan, Gyemin Lee, and Clayton Scott. +- [Domain Generalization by Marginal Transfer Learning](https://www.jmlr.org/papers/volume22/17-679/17-679.pdf) +Blanchard, Gilles, Aniket Anand Deshmukh, Urun Dogan, Gyemin Lee, and Clayton Scott. *Journal of Machine Learning Research* (**JMLR**) (2021).

Computer vision venues

-- [Learning to Diversify for Single Domain Generalization](https://arxiv.org/abs/2108.11726) -Wang, Zijian, Yadan Luo, Ruihong Qiu, Zi Huang, and Mahsa Baktashmotlagh. -*Proceedings of the IEEE International Conference on Computer Vision* (**ICCV**) 2021. +- (**XDED**) [Cross-Domain Ensemble Distillation for Domain Generalization](https://arxiv.org/abs/2211.14058) +Kyungmoon Lee, Sungyeon Kim, and Suha Kwak. +*Proceedings of the European Conference on Computer Vision* (**ECCV**) 2022. +[[code]](https://github.com/leekyungmoon/XDED) + +- [Learning to Diversify for Single Domain Generalization](https://arxiv.org/abs/2108.11726) +Wang, Zijian, Yadan Luo, Ruihong Qiu, Zi Huang, and Mahsa Baktashmotlagh. +*Proceedings of the IEEE International Conference on Computer Vision* (**ICCV**) 2021. [[code]](https://github.com/BUserName/Learning_to_diversify) -- (**NSAE**) [Boosting the Generalization Capability in Cross-Domain Few-shot Learning via Noise-enhanced Supervised Autoencoder](https://arxiv.org/abs/2108.05028) -Liang, Hanwen, Qiong Zhang, Peng Dai, and Juwei Lu. -*Proceedings of the IEEE International Conference on Computer Vision* (**ICCV**) 2021. +- (**NSAE**) [Boosting the Generalization Capability in Cross-Domain Few-shot Learning via Noise-enhanced Supervised Autoencoder](https://arxiv.org/abs/2108.05028) +Liang, Hanwen, Qiong Zhang, Peng Dai, and Juwei Lu. +*Proceedings of the IEEE International Conference on Computer Vision* (**ICCV**) 2021. -- (**Agr**) [Domain Generalization via Gradient Surgery](https://arxiv.org/abs/2108.01621) -Mansilla, Lucas, Rodrigo Echeveste, Diego H. Milone, and Enzo Ferrante. -*Proceedings of the IEEE International Conference on Computer Vision* (**ICCV**) 2021. +- (**Agr**) [Domain Generalization via Gradient Surgery](https://arxiv.org/abs/2108.01621) +Mansilla, Lucas, Rodrigo Echeveste, Diego H. Milone, and Enzo Ferrante. +*Proceedings of the IEEE International Conference on Computer Vision* (**ICCV**) 2021. [[code]](https://github.com/lucasmansilla/DGvGS) -- (**ASR-Norm**) [Adversarially Adaptive Normalization for Single Domain Generalization](https://arxiv.org/abs/2106.01899) -Fan, Xinjie, Qifei Wang, Junjie Ke, Feng Yang, Boqing Gong, and Mingyuan Zhou. -*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. +- (**ASR-Norm**) [Adversarially Adaptive Normalization for Single Domain Generalization](https://arxiv.org/abs/2106.01899) +Fan, Xinjie, Qifei Wang, Junjie Ke, Feng Yang, Boqing Gong, and Mingyuan Zhou. +*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. -- [A Fourier-based Framework for Domain Generalization](https://arxiv.org/abs/2105.11120) -Xu, Qinwei, Ruipeng Zhang, Ya Zhang, Yanfeng Wang, and Qi Tian. -*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. +- [A Fourier-based Framework for Domain Generalization](https://arxiv.org/abs/2105.11120) +Xu, Qinwei, Ruipeng Zhang, Ya Zhang, Yanfeng Wang, and Qi Tian. +*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. -- (**semanticGAN**) [Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization](https://arxiv.org/abs/2104.05833) -Li, Daiqing, Junlin Yang, Karsten Kreis, Antonio Torralba, and Sanja Fidler. -*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. +- (**semanticGAN**) [Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization](https://arxiv.org/abs/2104.05833) +Li, Daiqing, Junlin Yang, Karsten Kreis, Antonio Torralba, and Sanja Fidler. +*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. [[code]](https://nv-tlabs.github.io/semanticGAN/) -- (**RobustNet**) [RobustNet: Improving Domain Generalization in Urban-Scene Segmentation via Instance Selective Whitening](https://arxiv.org/abs/2103.15597) -Choi, Sungha, Sanghun Jung, Huiwon Yun, Joanne Kim, Seungryong Kim, and Jaegul Choo. -*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. +- (**RobustNet**) [RobustNet: Improving Domain Generalization in Urban-Scene Segmentation via Instance Selective Whitening](https://arxiv.org/abs/2103.15597) +Choi, Sungha, Sanghun Jung, Huiwon Yun, Joanne Kim, Seungryong Kim, and Jaegul Choo. +*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. [[code]](https://github.com/shachoi/RobustNet) -- (**PDEN**) [Progressive Domain Expansion Network for Single Domain Generalization](https://arxiv.org/abs/2103.16050) -Li, Lei, Ke Gao, Juan Cao, Ziyao Huang, Yepeng Weng, Xiaoyue Mi, Zhengze Yu, and Xiaoya Li. -*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. +- (**PDEN**) [Progressive Domain Expansion Network for Single Domain Generalization](https://arxiv.org/abs/2103.16050) +Li, Lei, Ke Gao, Juan Cao, Ziyao Huang, Yepeng Weng, Xiaoyue Mi, Zhengze Yu, and Xiaoya Li. +*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. [[code]](https://github.com/lileicv/PDEN) -- (**ELCFS**) [FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space](https://arxiv.org/abs/2103.06030) -Liu, Quande, Cheng Chen, Jing Qin, Qi Dou, and Pheng-Ann Heng. -*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. +- (**ELCFS**) [FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space](https://arxiv.org/abs/2103.06030) +Liu, Quande, Cheng Chen, Jing Qin, Qi Dou, and Pheng-Ann Heng. +*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. [[code]](https://github.com/liuquande/FedDG-ELCFS) -- (**FSDR**) [FSDR: Frequency Space Domain Randomization for Domain Generalization](https://arxiv.org/abs/2103.02370) -Huang, Jiaxing, Dayan Guan, Aoran Xiao, and Shijian Lu. -*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. +- (**FSDR**) [FSDR: Frequency Space Domain Randomization for Domain Generalization](https://arxiv.org/abs/2103.02370) +Huang, Jiaxing, Dayan Guan, Aoran Xiao, and Shijian Lu. +*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. -- [Domain Generalization via Inference-time Label-Preserving Target Projections](https://arxiv.org/abs/2103.01134) -Pandey, Prashant, Mrigank Raman, Sumanth Varambally, and Prathosh AP. -*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. +- [Domain Generalization via Inference-time Label-Preserving Target Projections](https://arxiv.org/abs/2103.01134) +Pandey, Prashant, Mrigank Raman, Sumanth Varambally, and Prathosh AP. +*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. -- [Adaptive Methods for Real-World Domain Generalization](https://arxiv.org/abs/2103.15796) -Dubey, Abhimanyu, Vignesh Ramanathan, Alex Pentland, and Dhruv Mahajan. -*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. +- [Adaptive Methods for Real-World Domain Generalization](https://arxiv.org/abs/2103.15796) +Dubey, Abhimanyu, Vignesh Ramanathan, Alex Pentland, and Dhruv Mahajan. +*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021.

arXiv

-- [Iterative Feature Matching: Toward Provable Domain Generalization with Logarithmic Environments.](https://arxiv.org/abs/2106.09913) -Chen, Yining, Elan Rosenfeld, Mark Sellke, Tengyu Ma, and Andrej Risteski. -*arXiv preprint arXiv:2106.09913* (2021). +- [Iterative Feature Matching: Toward Provable Domain Generalization with Logarithmic Environments.](https://arxiv.org/abs/2106.09913) +Chen, Yining, Elan Rosenfeld, Mark Sellke, Tengyu Ma, and Andrej Risteski. +*arXiv preprint arXiv:2106.09913* (2021). ## Research papers before 2021

Pathfinder

-- [Generalizing from several related classification tasks to a new unlabeled sample](http://papers.nips.cc/paper/4312-generalizing-from-several-related-classification-tasks-to-a-new-unlabeled-sample.pdf) -Blanchard, Gilles, Gyemin Lee, and Clayton Scott. +- [Generalizing from several related classification tasks to a new unlabeled sample](http://papers.nips.cc/paper/4312-generalizing-from-several-related-classification-tasks-to-a-new-unlabeled-sample.pdf) +Blanchard, Gilles, Gyemin Lee, and Clayton Scott. *Advances in neural information processing systems.* (**NIPS**) 2011.

Machine learning venues

#### Neural network-based methods -- [Domain Generalization via Entropy Regularization](https://proceedings.neurips.cc/paper/2020/hash/b98249b38337c5088bbc660d8f872d6a-Abstract.html) -Zhao, Shanshan, Mingming Gong, Tongliang Liu, Huan Fu, and Dacheng Tao. -*Neural Information Processing Systems* (**NeurIPS**) 2020. +- [Domain Generalization via Entropy Regularization](https://proceedings.neurips.cc/paper/2020/hash/b98249b38337c5088bbc660d8f872d6a-Abstract.html) +Zhao, Shanshan, Mingming Gong, Tongliang Liu, Huan Fu, and Dacheng Tao. +*Neural Information Processing Systems* (**NeurIPS**) 2020. [[code]](https://github.com/sshan-zhao/DG_via_ER) -- (**LDDG**) [Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization](https://proceedings.neurips.cc/paper/2020/hash/201d7288b4c18a679e48b31c72c30ded-Abstract.html) -Li, Haoliang, YuFei Wang, Renjie Wan, Shiqi Wang, Tie-Qiang Li, and Alex C. Kot. -*Neural Information Processing Systems* (**NeurIPS**) 2020. +- (**LDDG**) [Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization](https://proceedings.neurips.cc/paper/2020/hash/201d7288b4c18a679e48b31c72c30ded-Abstract.html) +Li, Haoliang, YuFei Wang, Renjie Wan, Shiqi Wang, Tie-Qiang Li, and Alex C. Kot. +*Neural Information Processing Systems* (**NeurIPS**) 2020. [[code]](https://github.com/wyf0912/LDDG) -- (**CSD**) [Efficient Domain Generalization via Common-Specific Low-Rank Decomposition](https://arxiv.org/abs/2003.12815) -Vihari Piratla, Praneeth Netrapalli, Sunita Sarawagi -*International Conference on Machine Learning* (**ICML**) 2020. +- (**CSD**) [Efficient Domain Generalization via Common-Specific Low-Rank Decomposition](https://arxiv.org/abs/2003.12815) +Vihari Piratla, Praneeth Netrapalli, Sunita Sarawagi +*International Conference on Machine Learning* (**ICML**) 2020. [[code]](https://github.com/vihari/CSD) -- (**GCFN**) [Generalized Convolutional Forest Networks for Domain Generalization and Visual Recognition.](https://openreview.net/pdf?id=H1lxVyStPH) -Ryu, Jongbin, Gitaek Kwon, Ming-Hsuan Yang, and Jongwoo Lim. +- (**GCFN**) [Generalized Convolutional Forest Networks for Domain Generalization and Visual Recognition.](https://openreview.net/pdf?id=H1lxVyStPH) +Ryu, Jongbin, Gitaek Kwon, Ming-Hsuan Yang, and Jongwoo Lim. *International Conference on Learning Representations* (**ICLR**) 2020. -- (**MASF**) [Domain Generalization via Model-Agnostic Learning of Semantic Features.](https://arxiv.org/abs/1910.13580) -Qi Dou, Daniel C. Castro, Konstantinos Kamnitsas, and Ben Glocker. -*Advances in Neural Information Processing Systems* (**NeurIPS**) 2019. +- (**MASF**) [Domain Generalization via Model-Agnostic Learning of Semantic Features.](https://arxiv.org/abs/1910.13580) +Qi Dou, Daniel C. Castro, Konstantinos Kamnitsas, and Ben Glocker. +*Advances in Neural Information Processing Systems* (**NeurIPS**) 2019. [[code]](https://github.com/biomedia-mira/masf) -- (**CAADA**) [Correlation-aware Adversarial Domain Adaptation and Generalization](https://www.sciencedirect.com/science/article/pii/S003132031930425X) -Rahman, Mohammad Mahfujur, Clinton Fookes, Mahsa Baktashmotlagh, and Sridha Sridharan. +- (**CAADA**) [Correlation-aware Adversarial Domain Adaptation and Generalization](https://www.sciencedirect.com/science/article/pii/S003132031930425X) +Rahman, Mohammad Mahfujur, Clinton Fookes, Mahsa Baktashmotlagh, and Sridha Sridharan. *Pattern Recognition* (2019): 107124. -- (**CROSSGRAD**) [Generalizing Across Domains via Cross-Gradient Training](https://openreview.net/pdf?id=r1Dx7fbCW) -Shankar, Shiv, Vihari Piratla, Soumen Chakrabarti, Siddhartha Chaudhuri, Preethi Jyothi, and Sunita Sarawagi. +- (**CROSSGRAD**) [Generalizing Across Domains via Cross-Gradient Training](https://openreview.net/pdf?id=r1Dx7fbCW) +Shankar, Shiv, Vihari Piratla, Soumen Chakrabarti, Siddhartha Chaudhuri, Preethi Jyothi, and Sunita Sarawagi. *International Conference on Learning Representations* (**ICLR**) 2018. -- (**MetaReg**) [MetaReg: Towards Domain Generalization using Meta-Regularization](http://papers.nips.cc/paper/7378-metareg-towards-domain-generalization-using-meta-regularization.pdf) -Balaji, Yogesh, Swami Sankaranarayanan, and Rama Chellappa. +- (**MetaReg**) [MetaReg: Towards Domain Generalization using Meta-Regularization](http://papers.nips.cc/paper/7378-metareg-towards-domain-generalization-using-meta-regularization.pdf) +Balaji, Yogesh, Swami Sankaranarayanan, and Rama Chellappa. *Advances in Neural Information Processing Systems* (**NeurIPS**) 2018. -- (**MLDG**) [Learning to generalize: Meta-learning for domain generalization](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16595/16558) -Li, Da, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. -*AAAI Conference on Artificial Intelligence* (**AAAI**) 2018. +- (**MLDG**) [Learning to generalize: Meta-learning for domain generalization](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16595/16558) +Li, Da, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. +*AAAI Conference on Artificial Intelligence* (**AAAI**) 2018. [[code]](https://github.com/HAHA-DL/MLDG) #### Kernel-based methods -- (**MDA**) [Domain Generalization via Multidomain Discriminant Analysis](http://auai.org/uai2019/proceedings/papers/101.pdf) -Hu, Shoubo, Kun Zhang, Zhitang Chen, Laiwan Chan. -*Conference on Uncertainty in Artificial Intelligence* (**UAI**) 2019. +- (**MDA**) [Domain Generalization via Multidomain Discriminant Analysis](http://auai.org/uai2019/proceedings/papers/101.pdf) +Hu, Shoubo, Kun Zhang, Zhitang Chen, Laiwan Chan. +*Conference on Uncertainty in Artificial Intelligence* (**UAI**) 2019. [[code]](https://github.com/amber0309/Multidomain-Discriminant-Analysis) -- (**CIDG**) [Domain Generalization via Conditional Invariant Representation](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16595/16558) -Li, Ya, Mingming Gong, Xinmei Tian, Tongliang Liu, and Dacheng Tao. -*AAAI Conference on Artificial Intelligence* (**AAAI**) 2018. +- (**CIDG**) [Domain Generalization via Conditional Invariant Representation](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16595/16558) +Li, Ya, Mingming Gong, Xinmei Tian, Tongliang Liu, and Dacheng Tao. +*AAAI Conference on Artificial Intelligence* (**AAAI**) 2018. [[code]](https://mingming-gong.github.io/papers/CIDG.zip) -- (**SCA**) [Scatter component analysis: A unified framework for domain adaptation and domain generalization](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7542175) -Ghifary, Muhammad, David Balduzzi, W. Bastiaan Kleijn, and Mengjie Zhang. -*IEEE Transactions on Pattern Analysis & Machine Intelligence* (**TPAMI**) 39.7 (2016): 1414-1430. +- (**SCA**) [Scatter component analysis: A unified framework for domain adaptation and domain generalization](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7542175) +Ghifary, Muhammad, David Balduzzi, W. Bastiaan Kleijn, and Mengjie Zhang. +*IEEE Transactions on Pattern Analysis & Machine Intelligence* (**TPAMI**) 39.7 (2016): 1414-1430. [[code(unofficial)]](https://github.com/amber0309/SCA) -- (**DICA**) [Domain generalization via invariant feature representation](http://proceedings.mlr.press/v28/muandet13.pdf) -Muandet, Krikamol, David Balduzzi, and Bernhard Schölkopf. -*International Conference on Machine Learning* (**ICML**) 2013. +- (**DICA**) [Domain generalization via invariant feature representation](http://proceedings.mlr.press/v28/muandet13.pdf) +Muandet, Krikamol, David Balduzzi, and Bernhard Schölkopf. +*International Conference on Machine Learning* (**ICML**) 2013. [[code]](http://krikamol.org/research/codes/dica.zip)

Computer vision venues

#### Autoencoder-based methods -- (**MMD-AAE**) [Domain generalization with adversarial feature learning](http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/2932.pdf) -Li, Haoliang, Sinno Jialin Pan, Shiqi Wang, and Alex C. Kot. +- (**MMD-AAE**) [Domain generalization with adversarial feature learning](http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/2932.pdf) +Li, Haoliang, Sinno Jialin Pan, Shiqi Wang, and Alex C. Kot. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2018. -- (**MTAE**) [Domain generalization for object recognition with multi-task autoencoders](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Ghifary_Domain_Generalization_for_ICCV_2015_paper.pdf) -Ghifary, Muhammad, W. Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi. -*Proceedings of the IEEE International Conference on Computer Vision* (**ICCV**) 2015. +- (**MTAE**) [Domain generalization for object recognition with multi-task autoencoders](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Ghifary_Domain_Generalization_for_ICCV_2015_paper.pdf) +Ghifary, Muhammad, W. Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi. +*Proceedings of the IEEE International Conference on Computer Vision* (**ICCV**) 2015. [[code]](https://github.com/ghif/mtae) #### Deep neural network-based methods -- (**MetaVIB**) [Learning to Learn with Variational Information Bottleneck for Domain Generalization](https://arxiv.org/abs/2007.07645) -Du, Yingjun, Jun Xu, Huan Xiong, Qiang Qiu, Xiantong Zhen, Cees GM Snoek, and Ling Shao. -*Proceedings of the European Conference on Computer Vision* (**ECCV**) 2020. +- (**MetaVIB**) [Learning to Learn with Variational Information Bottleneck for Domain Generalization](https://arxiv.org/abs/2007.07645) +Du, Yingjun, Jun Xu, Huan Xiong, Qiang Qiu, Xiantong Zhen, Cees GM Snoek, and Ling Shao. +*Proceedings of the European Conference on Computer Vision* (**ECCV**) 2020. -- (**DMG**) [Learning to Balance Specificity and Invariance for In and Out of Domain Generalization](https://arxiv.org/abs/2008.12839) -Chattopadhyay, Prithvijit, Yogesh Balaji, and Judy Hoffman. -*Proceedings of the European Conference on Computer Vision* (**ECCV**) 2020. +- (**DMG**) [Learning to Balance Specificity and Invariance for In and Out of Domain Generalization](https://arxiv.org/abs/2008.12839) +Chattopadhyay, Prithvijit, Yogesh Balaji, and Judy Hoffman. +*Proceedings of the European Conference on Computer Vision* (**ECCV**) 2020. [[code]](https://github.com/prithv1/DMG) -- (**DSON**) [Learning to Optimize Domain Specific Normalization for Domain Generalization](https://arxiv.org/abs/1907.04275) -Seonguk Seo, Yumin Suh, Dongwan Kim, Geeho Kim, Jongwoo Han and ohyung Han. -*Proceedings of the European Conference on Computer Vision* (**ECCV**) 2020. +- (**DSON**) [Learning to Optimize Domain Specific Normalization for Domain Generalization](https://arxiv.org/abs/1907.04275) +Seonguk Seo, Yumin Suh, Dongwan Kim, Geeho Kim, Jongwoo Han and ohyung Han. +*Proceedings of the European Conference on Computer Vision* (**ECCV**) 2020. -- (**EISNet**) [Learning from Extrinsic and Intrinsic Supervisions for Domain Generalization](https://arxiv.org/abs/2007.09316) -Wang, Shujun, Lequan Yu, Caizi Li, Chi-Wing Fu, and Pheng-Ann Heng. -*Proceedings of the European Conference on Computer Vision* (**ECCV**) 2020. +- (**EISNet**) [Learning from Extrinsic and Intrinsic Supervisions for Domain Generalization](https://arxiv.org/abs/2007.09316) +Wang, Shujun, Lequan Yu, Caizi Li, Chi-Wing Fu, and Pheng-Ann Heng. +*Proceedings of the European Conference on Computer Vision* (**ECCV**) 2020. [[code]](https://github.com/EmmaW8/EISNet) -- (**MetaVIB**) [Learning to Learn with Variational Information Bottleneck for Domain Generalization](https://arxiv.org/abs/2007.07645) -Du, Yingjun, Jun Xu, Huan Xiong, Qiang Qiu, Xiantong Zhen, Cees GM Snoek, and Ling Shao. +- (**MetaVIB**) [Learning to Learn with Variational Information Bottleneck for Domain Generalization](https://arxiv.org/abs/2007.07645) +Du, Yingjun, Jun Xu, Huan Xiong, Qiang Qiu, Xiantong Zhen, Cees GM Snoek, and Ling Shao. *Proceedings of the European Conference on Computer Vision* (**ECCV**) 2020. -- (**RSC**) [Self-Challenging Improves Cross-Domain Generalization](https://arxiv.org/abs/2007.02454) -Huang, Zeyi, Haohan Wang, Eric P. Xing, and Dong Huang. +- (**RSC**) [Self-Challenging Improves Cross-Domain Generalization](https://arxiv.org/abs/2007.02454) +Huang, Zeyi, Haohan Wang, Eric P. Xing, and Dong Huang. *Proceedings of the European Conference on Computer Vision* (**ECCV**) 2020. -- (**L2A-OT**) [Learning to Generate Novel Domains for Domain Generalization](https://arxiv.org/abs/2007.03304) -Zhou, Kaiyang, Yongxin Yang, Timothy Hospedales, and Tao Xiang. +- (**L2A-OT**) [Learning to Generate Novel Domains for Domain Generalization](https://arxiv.org/abs/2007.03304) +Zhou, Kaiyang, Yongxin Yang, Timothy Hospedales, and Tao Xiang. *Proceedings of the European Conference on Computer Vision* (**ECCV**) 2020. -- (**SSDG**) [Single-Side Domain Generalization for Face Anti-Spoofing](https://arxiv.org/abs/2004.14043) -Jia, Yunpei, Jie Zhang, Shiguang Shan, and Xilin Chen. -*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2020. +- (**SSDG**) [Single-Side Domain Generalization for Face Anti-Spoofing](https://arxiv.org/abs/2004.14043) +Jia, Yunpei, Jie Zhang, Shiguang Shan, and Xilin Chen. +*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2020. [[code]](https://github.com/taylover-pei/SSDG-CVPR2020) -- (**Epi-FCR**) [Episodic Training for Domain Generalization](https://arxiv.org/abs/1902.00113) -Li, Da, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song, and Timothy M. Hospedales. -*Proceedings of the IEEE International Conference on Computer Vision* (**ICCV**) 2019. +- (**Epi-FCR**) [Episodic Training for Domain Generalization](https://arxiv.org/abs/1902.00113) +Li, Da, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song, and Timothy M. Hospedales. +*Proceedings of the IEEE International Conference on Computer Vision* (**ICCV**) 2019. [[code]](https://github.com/HAHA-DL/Episodic-DG) -- (**JiGen**) [Domain Generalization by Solving Jigsaw Puzzles](https://arxiv.org/abs/1903.06864) -Carlucci, Fabio Maria, Antonio D'Innocente, Silvia Bucci, Barbara Caputo, and Tatiana Tommasi. -*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2019. +- (**JiGen**) [Domain Generalization by Solving Jigsaw Puzzles](https://arxiv.org/abs/1903.06864) +Carlucci, Fabio Maria, Antonio D'Innocente, Silvia Bucci, Barbara Caputo, and Tatiana Tommasi. +*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2019. [[code]](https://github.com/fmcarlucci/JigenDG) -- (**CIDDG**) [Deep Domain Generalization via Conditional Invariant Adversarial Networks](http://openaccess.thecvf.com/content_ECCV_2018/papers/Ya_Li_Deep_Domain_Generalization_ECCV_2018_paper.pdf) -Li, Ya, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng Tao. +- (**CIDDG**) [Deep Domain Generalization via Conditional Invariant Adversarial Networks](http://openaccess.thecvf.com/content_ECCV_2018/papers/Ya_Li_Deep_Domain_Generalization_ECCV_2018_paper.pdf) +Li, Ya, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng Tao. *Proceedings of the European Conference on Computer Vision* (**ECCV**) 2018. -- [Deep Domain Generalization With Structured Low-Rank Constraint](https://ieeexplore.ieee.org/document/8053784) -Ding, Zhengming, and Yun Fu. +- [Deep Domain Generalization With Structured Low-Rank Constraint](https://ieeexplore.ieee.org/document/8053784) +Ding, Zhengming, and Yun Fu. *IEEE Transactions on Image Processing* (**TIP**) 27.1 (2017): 304-313. -- (**CCSA**) [Unified deep supervised domain adaptation and generalization](http://openaccess.thecvf.com/content_ICCV_2017/papers/Motiian_Unified_Deep_Supervised_ICCV_2017_paper.pdf) -Motiian, Saeid, Marco Piccirilli, Donald A. Adjeroh, and Gianfranco Doretto. -*Proceedings of the IEEE International Conference on Computer Vision* (**ICCV**) 2017. +- (**CCSA**) [Unified deep supervised domain adaptation and generalization](http://openaccess.thecvf.com/content_ICCV_2017/papers/Motiian_Unified_Deep_Supervised_ICCV_2017_paper.pdf) +Motiian, Saeid, Marco Piccirilli, Donald A. Adjeroh, and Gianfranco Doretto. +*Proceedings of the IEEE International Conference on Computer Vision* (**ICCV**) 2017. [[code]](https://github.com/samotiian/CCSA) -- [Deeper, broader and artier domain generalization](https://ieeexplore.ieee.org/abstract/document/8237853) -Li, Da, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. -*Proceedings of the IEEE International Conference on Computer Vision* (**ICCV**) 2017. +- [Deeper, broader and artier domain generalization](https://ieeexplore.ieee.org/abstract/document/8237853) +Li, Da, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. +*Proceedings of the IEEE International Conference on Computer Vision* (**ICCV**) 2017. [[code]](http://www.eecs.qmul.ac.uk/~dl307/project_iccv2017) #### Metric learning-based methods -- (**UML**) [Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias](https://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Fang_Unbiased_Metric_Learning_2013_ICCV_paper.pdf) -Fang, Chen, Ye Xu, and Daniel N. Rockmore. +- (**UML**) [Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias](https://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Fang_Unbiased_Metric_Learning_2013_ICCV_paper.pdf) +Fang, Chen, Ye Xu, and Daniel N. Rockmore. *Proceedings of the IEEE International Conference on Computer Vision* (**ICCV**) 2013. #### Support vector machine (SVM)-based methods -- (**MVDG**) [Multi-view domain generalization for visual recognition](https://ieeexplore.ieee.org/document/7410834) -Niu, Li, Wen Li, and Dong Xu. +- (**MVDG**) [Multi-view domain generalization for visual recognition](https://ieeexplore.ieee.org/document/7410834) +Niu, Li, Wen Li, and Dong Xu. *Proceedings of the IEEE International Conference on Computer Vision* (**ICCV**) 2015. -- (**LRE-SVM**) [Exploiting low-rank structure from latent domains for domain generalization](https://link.springer.com/chapter/10.1007/978-3-319-10578-9_41) -Xu, Zheng, Wen Li, Li Niu, and Dong Xu. -*European Conference on Computer Vision* (**ECCV**) 2014. +- (**LRE-SVM**) [Exploiting low-rank structure from latent domains for domain generalization](https://link.springer.com/chapter/10.1007/978-3-319-10578-9_41) +Xu, Zheng, Wen Li, Li Niu, and Dong Xu. +*European Conference on Computer Vision* (**ECCV**) 2014. [[code]](http://www.vision.ee.ethz.ch/~liwenw/papers/Xu_ECCV2014_codes.zip) -- (**Undo-Bias**) [Undoing the damage of dataset bias](https://link.springer.com/chapter/10.1007/978-3-642-33718-5_12) -Khosla, Aditya, Tinghui Zhou, Tomasz Malisiewicz, Alexei A. Efros, and Antonio Torralba. -*European Conference on Computer Vision* (**ECCV**) 2012. +- (**Undo-Bias**) [Undoing the damage of dataset bias](https://link.springer.com/chapter/10.1007/978-3-642-33718-5_12) +Khosla, Aditya, Tinghui Zhou, Tomasz Malisiewicz, Alexei A. Efros, and Antonio Torralba. +*European Conference on Computer Vision* (**ECCV**) 2012. [[code]](https://github.com/adikhosla/undoing-bias/archive/master.zip)

arXiv

-- (**NILE**) [A causal framework for distribution generalization](https://arxiv.org/abs/2006.07433) -Christiansen, Rune, Niklas Pfister, Martin Emil Jakobsen, Nicola Gnecco, and Jonas Peters. -*arXiv preprint arXiv:2006.07433* (2020). +- (**NILE**) [A causal framework for distribution generalization](https://arxiv.org/abs/2006.07433) +Christiansen, Rune, Niklas Pfister, Martin Emil Jakobsen, Nicola Gnecco, and Jonas Peters. +*arXiv preprint arXiv:2006.07433* (2020). -- (**REx**) [Out-of-distribution generalization via risk extrapolation](https://arxiv.org/abs/2003.00688) -Krueger, David, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Remi Le Priol, and Aaron Courville. -*arXiv preprint arXiv:2003.00688* (2020). +- (**REx**) [Out-of-distribution generalization via risk extrapolation](https://arxiv.org/abs/2003.00688) +Krueger, David, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Remi Le Priol, and Aaron Courville. +*arXiv preprint arXiv:2003.00688* (2020). -- (**RVP**) [Risk Variance Penalization: From Distributional Robustness to Causality](https://arxiv.org/abs/2006.07544) -Xie, Chuanlong, Fei Chen, Yue Liu, and Zhenguo Li. -*arXiv preprint arXiv:2006.07544* (2020). +- (**RVP**) [Risk Variance Penalization: From Distributional Robustness to Causality](https://arxiv.org/abs/2006.07544) +Xie, Chuanlong, Fei Chen, Yue Liu, and Zhenguo Li. +*arXiv preprint arXiv:2006.07544* (2020). -- [Generalization and Invariances in the Presence of Unobserved Confounding](https://arxiv.org/abs/2007.10653) -Bellot, Alexis and van der Schaar, Mihaela. -*arXiv preprint arXiv:2007.10653* (2020). +- [Generalization and Invariances in the Presence of Unobserved Confounding](https://arxiv.org/abs/2007.10653) +Bellot, Alexis and van der Schaar, Mihaela. +*arXiv preprint arXiv:2007.10653* (2020). -- (**FAR**) [Feature Alignment and Restoration for Domain Generalization and Adaptation](https://arxiv.org/abs/2006.12009) -Jin, Xin, Cuiling Lan, Wenjun Zeng, and Zhibo Chen. -*arXiv preprint arXiv:2006.12009* (2020). +- (**FAR**) [Feature Alignment and Restoration for Domain Generalization and Adaptation](https://arxiv.org/abs/2006.12009) +Jin, Xin, Cuiling Lan, Wenjun Zeng, and Zhibo Chen. +*arXiv preprint arXiv:2006.12009* (2020). -- [Frustratingly Simple Domain Generalization via Image Stylization](https://arxiv.org/abs/2006.11207) -Somavarapu, Nathan, Chih-Yao Ma, and Zsolt Kira. -*arXiv preprint arXiv:2006.11207* (2020). +- [Frustratingly Simple Domain Generalization via Image Stylization](https://arxiv.org/abs/2006.11207) +Somavarapu, Nathan, Chih-Yao Ma, and Zsolt Kira. +*arXiv preprint arXiv:2006.11207* (2020). [[code]](https://github.com/GT-RIPL/DomainGeneralization-Stylization) -- (**RVR**) [Representation via Representations: Domain Generalization via Adversarially Learned Invariant Representations](https://arxiv.org/abs/2006.11478) -Deng, Zhun, Frances Ding, Cynthia Dwork, Rachel Hong, Giovanni Parmigiani, Prasad Patil, and Pragya Sur. -*arXiv preprint arXiv:2006.11478* (2020). +- (**RVR**) [Representation via Representations: Domain Generalization via Adversarially Learned Invariant Representations](https://arxiv.org/abs/2006.11478) +Deng, Zhun, Frances Ding, Cynthia Dwork, Rachel Hong, Giovanni Parmigiani, Prasad Patil, and Pragya Sur. +*arXiv preprint arXiv:2006.11478* (2020). -- (**G2DM**) [Generalizing to unseen Domains via Distribution Matching](https://arxiv.org/abs/1911.00804) -Isabela Albuquerque, João Monteiro, Mohammad Darvishi, Tiago H. Falk, Ioannis Mitliagkas -*arXiv preprint arXiv:1911.00804* (2019). +- (**G2DM**) [Generalizing to unseen Domains via Distribution Matching](https://arxiv.org/abs/1911.00804) +Isabela Albuquerque, João Monteiro, Mohammad Darvishi, Tiago H. Falk, Ioannis Mitliagkas +*arXiv preprint arXiv:1911.00804* (2019). [[code]](https://github.com/belaalb/TI-DG) -- [Invariant Risk Minimization](https://arxiv.org/abs/1907.02893) -Arjovsky, Martin and Bottou, Leon and Gulrajani, Ishaan and Lopez-Paz, David. -*arXiv preprint arXiv:1907.02893* (2019). +- [Invariant Risk Minimization](https://arxiv.org/abs/1907.02893) +Arjovsky, Martin and Bottou, Leon and Gulrajani, Ishaan and Lopez-Paz, David. +*arXiv preprint arXiv:1907.02893* (2019). [[code]](https://github.com/facebookresearch/InvariantRiskMinimization) -- [A Generalization Error Bound for Multi-class Domain Generalization](https://arxiv.org/abs/1905.10392) -Deshmukh, Aniket Anand, Yunwen Lei, Srinagesh Sharma, Urun Dogan, James W. Cutler, and Clayton Scott. -*arXiv preprint arXiv:1905.10392* (2019). +- [A Generalization Error Bound for Multi-class Domain Generalization](https://arxiv.org/abs/1905.10392) +Deshmukh, Aniket Anand, Yunwen Lei, Srinagesh Sharma, Urun Dogan, James W. Cutler, and Clayton Scott. +*arXiv preprint arXiv:1905.10392* (2019). [[code]](https://www.dropbox.com/sh/bls758ro5762mtf/AACbn3UXJItY9uwtmCAdi7E3a?dl=0) -- [Domain generalization by marginal transfer learning](https://arxiv.org/abs/1711.07910) -Blanchard, Gilles, Aniket Anand Deshmukh, Urun Dogan, Gyemin Lee, and Clayton Scott. -*arXiv preprint arXiv:1711.07910* (2017). +- [Domain generalization by marginal transfer learning](https://arxiv.org/abs/1711.07910) +Blanchard, Gilles, Aniket Anand Deshmukh, Urun Dogan, Gyemin Lee, and Clayton Scott. +*arXiv preprint arXiv:1711.07910* (2017). [[code]](https://github.com/aniketde/DomainGeneralizationMarginal) ----- @@ -389,22 +394,22 @@ Blanchard, Gilles, Aniket Anand Deshmukh, Urun Dogan, Gyemin Lee, and Clayton Sc #### Introduction -This dataset is constructed by collecting common classes in two datasets: Office-31 (which contains A, W and D) and Caltech-256 (which is C). -Four domains: A(Amazon, 958 instances), W(Webcam, 295 instances), D(DSLR, 157 instances), and C(Caltech, 1123 instances). +This dataset is constructed by collecting common classes in two datasets: Office-31 (which contains A, W and D) and Caltech-256 (which is C). +Four domains: A(Amazon, 958 instances), W(Webcam, 295 instances), D(DSLR, 157 instances), and C(Caltech, 1123 instances). Ten common classes: back pack, bike, calculator, headphones, keyboard, laptop_computer, monitor, mouse, mug, and projector. #### Download -Download Office+Caltech original images [[Google Drive](https://drive.google.com/file/d/14OIlzWFmi5455AjeBZLak2Ku-cFUrfEo/view?usp=sharing)] -Download Office+Caltech SURF dataset [[Google Drive](https://drive.google.com/file/d/1TKot-lmTy5h797YaAeydkOD6kWqii5fa/view?usp=sharing)] +Download Office+Caltech original images [[Google Drive](https://drive.google.com/file/d/14OIlzWFmi5455AjeBZLak2Ku-cFUrfEo/view?usp=sharing)] +Download Office+Caltech SURF dataset [[Google Drive](https://drive.google.com/file/d/1TKot-lmTy5h797YaAeydkOD6kWqii5fa/view?usp=sharing)] Download Office+Caltech DeCAF dataset [[Google Drive](https://drive.google.com/file/d/1mgEyml0ZoZjUlUQfWNfr-Srxmlot3yq6/view?usp=sharing)] ### VLCS #### Introduction -Four domains: V(VOC2007), L(LabelMe), C(Caltech), and S(SUN09). -Five common classes: bird, car, chair, dog, and person. +Four domains: V(VOC2007), L(LabelMe), C(Caltech), and S(SUN09). +Five common classes: bird, car, chair, dog, and person. #### Download @@ -433,8 +438,8 @@ Download links are available at https://github.com/hendrycks/imagenet-r #### Introduction -Four domains: photo, art painting, cartoon, and sketch. -Seven common classes: dog, elephant, horse, giraffe, guitar, house, and person. +Four domains: photo, art painting, cartoon, and sketch. +Seven common classes: dog, elephant, horse, giraffe, guitar, house, and person. #### Download @@ -444,7 +449,7 @@ Download the PACS dataset [[Google Drive](https://drive.google.com/drive/folders #### Introduction -This dataset contains a subset of the popular YFCC100M dataset, that are partitioned based on the images' country of origin. +This dataset contains a subset of the popular YFCC100M dataset, that are partitioned based on the images' country of origin. #### Download @@ -455,38 +460,38 @@ The infomation of Geo-YFCC dataset is available at https://github.com/abhimanyud ## DG variants -- (**RaMoE**) [Generalizable Person Re-identification with Relevance-aware Mixture of Experts](https://openaccess.thecvf.com/content/CVPR2021/papers/Dai_Generalizable_Person_Re-Identification_With_Relevance-Aware_Mixture_of_Experts_CVPR_2021_paper.pdf) -Dai, Yongxing, Xiaotong Li, Jun Liu, Zekun Tong, and Ling-Yu Duan. -*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. +- (**RaMoE**) [Generalizable Person Re-identification with Relevance-aware Mixture of Experts](https://openaccess.thecvf.com/content/CVPR2021/papers/Dai_Generalizable_Person_Re-Identification_With_Relevance-Aware_Mixture_of_Experts_CVPR_2021_paper.pdf) +Dai, Yongxing, Xiaotong Li, Jun Liu, Zekun Tong, and Ling-Yu Duan. +*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2021. -- [Zero Shot Domain Generalization](https://arxiv.org/abs/2008.07443) -Udit Maniyar, Joseph K J, Aniket Anand Deshmukh, Urun Dogan, Vineeth N Balasubramanian -*British Machine Vision Conference* (**BMVC**) 2020. +- [Zero Shot Domain Generalization](https://arxiv.org/abs/2008.07443) +Udit Maniyar, Joseph K J, Aniket Anand Deshmukh, Urun Dogan, Vineeth N Balasubramanian +*British Machine Vision Conference* (**BMVC**) 2020. -- [Exchanging Lessons Between Algorithmic Fairness and Domain Generalization](https://arxiv.org/abs/2010.07249) -Creager, Elliot, Jörn-Henrik Jacobsen, and Richard Zemel. -*arXiv preprint arXiv:2010.07249* 2020. +- [Exchanging Lessons Between Algorithmic Fairness and Domain Generalization](https://arxiv.org/abs/2010.07249) +Creager, Elliot, Jörn-Henrik Jacobsen, and Richard Zemel. +*arXiv preprint arXiv:2010.07249* 2020. -- [Learning to Learn Single Domain Generalization](https://arxiv.org/abs/2003.13216) -Fengchun Qiao, Long Zhao, Xi Peng. -*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2020. +- [Learning to Learn Single Domain Generalization](https://arxiv.org/abs/2003.13216) +Fengchun Qiao, Long Zhao, Xi Peng. +*Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (**CVPR**) 2020. -- [Domain Generalization Using a Mixture of Multiple Latent Domains](https://aaai.org/Papers/AAAI/2020GB/AAAI-MatsuuraT.3100.pdf) -Toshihiko Matsuura, Tatsuya Harada. -*AAAI Conference on Artificial Intelligence* (**AAAI**) 2020. +- [Domain Generalization Using a Mixture of Multiple Latent Domains](https://aaai.org/Papers/AAAI/2020GB/AAAI-MatsuuraT.3100.pdf) +Toshihiko Matsuura, Tatsuya Harada. +*AAAI Conference on Artificial Intelligence* (**AAAI**) 2020. [[code]](https://github.com/mil-tokyo/dg_mmld) -- (**APN**) [Adversarial Pyramid Network for Video Domain Generalization](https://arxiv.org/abs/1912.03716) -Zhiyu Yao, Yunbo Wang, Xingqiang Du, Mingsheng Long, Jianmin Wang -*arXiv preprint arXiv:1912.03716* (2019). +- (**APN**) [Adversarial Pyramid Network for Video Domain Generalization](https://arxiv.org/abs/1912.03716) +Zhiyu Yao, Yunbo Wang, Xingqiang Du, Mingsheng Long, Jianmin Wang +*arXiv preprint arXiv:1912.03716* (2019). -- (**FC**) [Feature-Critic Networks for Heterogeneous Domain Generalization](https://arxiv.org/abs/1901.11448) -Li, Yiying, Yongxin Yang, Wei Zhou, and Timothy M. Hospedales -*International Conference on Machine Learning* (**ICML**) 2019. +- (**FC**) [Feature-Critic Networks for Heterogeneous Domain Generalization](https://arxiv.org/abs/1901.11448) +Li, Yiying, Yongxin Yang, Wei Zhou, and Timothy M. Hospedales +*International Conference on Machine Learning* (**ICML**) 2019. [[code]](https://github.com/liyiying/Feature_Critic) -- [Learning Robust Representations by Projecting Superficial Statistics Out](https://openreview.net/pdf?id=rJEjjoR9K7) -Wang, Haohan, Zexue He, Zachary C. Lipton, and Eric P. Xing. +- [Learning Robust Representations by Projecting Superficial Statistics Out](https://openreview.net/pdf?id=rJEjjoR9K7) +Wang, Haohan, Zexue He, Zachary C. Lipton, and Eric P. Xing. *International Conference on Learning Representations* (**ICLR**) 2019. -----