-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsae_interventions.py
483 lines (432 loc) · 21.5 KB
/
sae_interventions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
from ioi_utils import *
from circuit_utils import get_prompt_feature_idxs
from sae_variants import VanillaAutoEncoder, GatedAutoEncoder, AttributionAutoEncoder, TopKAutoEncoder
# from webtext_utils import *
DTYPES = {"fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16}
################################################################################
### lol what is this doing here?
################################################################################
@op
def generate_prompts(distribution: PromptDistribution, patterns: List[str],
prompts_per_pattern: int, random_seed: int,
) -> Any:
random.seed(random_seed)
parts = [[distribution.sample_one(pattern=pattern)
for _ in range(prompts_per_pattern)] for pattern in patterns]
prompts = [p for part in parts for p in part]
return prompts
@op
def precompute_activations(X: Any, node: Node, batch_size: int, with_timeout: Optional[float] = None) -> torch.Tensor:
if with_timeout is not None:
A = run_custom(prompts=X, batch_size=batch_size, node=node, timeout=with_timeout)
else:
A = run_with_cache(prompts=X, nodes=[node], batch_size=batch_size, hook_specs=[],)[0]
return A
@op
def get_dataset_mean(A: Tensor) -> Tensor:
return A.mean(dim=0)
def mean_ablate_hook(activation: Tensor, hook: HookPoint, node: Node, mean: Tensor, idx: Tensor) -> Tensor:
activation[idx] = mean
return activation
# def encoder_hook(activation: Tensor, hook: HookPoint, node: Node, encoder: Union[VanillaAutoEncoder, GatedAutoEncoder], normalization_scale: Optional[float] = None, idx: Tensor) -> Tensor:
# idx: Tensor, normalization_scale: Optional[float] = None,
# ) -> Tensor:
# with torch.no_grad():
# if normalization_scale is not None:
# A = activation[idx] / normalization_scale
# else:
# A = activation[idx]
# reconstructions = encoder(A)[1]
# if normalization_scale is not None:
# reconstructions = reconstructions * normalization_scale
# activation[idx] = reconstructions
# return activation
################################################################################
### editing interventions
################################################################################
def get_feature_weights(
encoder: Union[VanillaAutoEncoder, GatedAutoEncoder],
A: Tensor,
batch_size: int,
) -> Tuple[Tensor, Tensor]:
"""
Given reconstruction x_hat = sum_j f_j d_j + b_dec, the weight of a feature
j is w_j = f_j d_j^T (x_hat - b_dec) / ||x_hat - b_dec||^2.
"""
recons = encoder.get_reconstruction(A)
feature_magnitudes = encoder.get_feature_magnitudes(A)
num_examples = A.shape[0]
num_batches = num_examples // batch_size
feature_weights_batches = []
for i in range(num_batches): # to avoid OOM
magnitudes_batch = feature_magnitudes[i*batch_size:(i+1)*batch_size]
# this is x_hat - b_dec
centered_recons_batch = recons[i*batch_size:(i+1)*batch_size] - encoder.b_dec.detach().unsqueeze(0)
centered_recons_norms = centered_recons_batch.norm(dim=-1, keepdim=True)
feature_weights = einsum('batch hidden, hidden dim, batch dim -> batch hidden', magnitudes_batch, encoder.W_dec.detach(), centered_recons_batch) / centered_recons_norms**2
feature_weights_batches.append(feature_weights)
feature_weights = torch.cat(feature_weights_batches, dim=0)
sums = feature_weights.sum(dim=1)
nonzero_sums = sums[sums != 0]
ones = torch.ones_like(nonzero_sums)
#! a sanity check
assert torch.allclose(nonzero_sums, ones, atol=0.05), sums
return feature_weights, feature_magnitudes
@op
def compute_total_feature_weight(
encoder: Union[VanillaAutoEncoder, GatedAutoEncoder],
A: Tensor,
batch_size: int,
feature_idxs: Tensor, # of shape (batch, num_chosen_features)
) -> Tensor:
"""
Compute the total weight of chosen features (could be different for each
example). We use this as a proxy for the "magnitude" of an edit.
"""
weights, _ = get_feature_weights(encoder, A, batch_size)
selected_weights = torch.stack([weights[range(A.shape[0]), feature_idxs[:, i]] for i in range(feature_idxs.shape[1])], dim=1)
return selected_weights.sum(dim=1) # of shape (batch,)
def get_top_k_features_per_prompt(
attr_idxs_clean: Tensor, # shape (batch,)
clean_active: Tensor, # boolean mask of shape (batch, n_features)
high_f1_features: Tensor, # index tensor, shape (attribute_size, n_features)
k: int,
) -> Tensor:
n_examples = clean_active.shape[0]
# of shape (batch, n_features)
# provides the sorted indices of features, from highest to lowest F1, for the attribute
prompt_high_f1_features = high_f1_features[attr_idxs_clean]
# now, we permute the mask so that the entries are sorted according to the F1 score
batch_indices = torch.arange(n_examples).cuda().unsqueeze(1).expand_as(clean_active)
# now, we obtain a boolean mask where M[i, j] = True if the j-th highest F1 feature is active in the i-th prompt
clean_active_in_decreasing_f1_order = clean_active[batch_indices, prompt_high_f1_features]
def get_indices_of_first_k_nonzeros(X: Tensor, k: int) -> Tensor:
idx = torch.arange(X.shape[1], 0, -1).cuda()
return torch.topk(X * idx, k=k, dim=1).indices
indices_of_top_features = get_indices_of_first_k_nonzeros(clean_active_in_decreasing_f1_order, k=k)
batch_indices = torch.arange(n_examples).cuda().unsqueeze(1).expand_as(indices_of_top_features)
top_k_features_per_prompt = prompt_high_f1_features[batch_indices, indices_of_top_features]
return top_k_features_per_prompt
@op(__allow_side_effects__=True)
@batched(args=['A_clean', 'A_cf', 'clean_prompts', 'cf_prompts',], n_outputs=3, reducer='cat', verbose=False)
def get_edit_using_f1_scores(
encoder: Union[VanillaAutoEncoder, GatedAutoEncoder, AttributionAutoEncoder, TopKAutoEncoder],
A_clean_normalized: Tensor,
A_cf_normalized: Tensor,
clean_prompts: Any,
cf_prompts: Any,
clean_feature_idxs: Dict[Tuple[str,...], Tensor],
cf_feature_idxs: Dict[Tuple[str,...], Tensor],
attribute: Tuple[str,...],
high_f1_features_dict: Dict[Tuple[str,...], Tensor],
normalization_scale: float,
num_exchange: int,
batch_size: int = 100,
) -> Tuple[Tensor, Tensor, Tensor]:
"""
Perform an activation edit of a single attribute, using the features with
high F1 score for the attribute as a guide. Specifically,
- `high_f1_features` is of shape (*attribute_shape, num_sae_features), and
for each index into a value of the attribute contains the ordered list of
the topk features with the highest F1 score for this value of the attribute
- we subtract the `num_exchange` top-F1-score features from the clean
activation
- and add the `num_exchange` top-F1-score features from the counterfactual
activation
UPDATE in version 1:
- we now only change the top `num_exchange` features PRESENT in the activations.
UPDATE in version 2:
- fix bug when determining the top features!
NOTE: this returns the *unnormalized* edited activations, in their original
scale.
"""
high_f1_features = high_f1_features_dict[attribute]
n_examples = A_clean_normalized.shape[0]
magnitudes_clean = encoder.get_feature_magnitudes(A_clean_normalized)
magnitudes_cf = encoder.get_feature_magnitudes(A_cf_normalized)
# clean_feature_idxs = get_prompt_feature_idxs(
# prompts=clean_prompts,
# features=[attribute],
# )
# cf_feature_idxs = get_prompt_feature_idxs(
# prompts=cf_prompts,
# features=[attribute],
# )
# now, figure out which features to add/remove
attr_idxs_clean = clean_feature_idxs[attribute].squeeze()
attr_idxs_cf = cf_feature_idxs[attribute].squeeze()
assert len(attr_idxs_clean.shape) == 1
### take the first num_exchange features present in the activations
def pad_2d_boolean_mask(mask: Tensor, desired_count: int) -> Tensor:
res = mask.clone()
for i in range(res.shape[0]):
current_count = res[i].sum().item()
num_to_set_true = desired_count - current_count
if num_to_set_true <= 0:
continue
else:
res[i, torch.where(~res[i])[0][:num_to_set_true]] = True
return res
clean_active = (magnitudes_clean > 0).bool()
cf_active = (magnitudes_cf > 0).bool()
# unnecessary w/ new vectorized implementation
# clean_active = pad_2d_boolean_mask(clean_active, num_exchange)
# cf_active = pad_2d_boolean_mask(cf_active, num_exchange)
### slow way to get the features to add/remove
# features_to_remove = []
# for i in range(n_examples):
# t = high_f1_features[attr_idxs_clean[i]]
# features_to_remove.append(t[torch.isin(t, torch.where(clean_active[i])[0])][:num_exchange])
# features_to_remove = torch.stack(features_to_remove, dim=0).long()
# features_to_add = []
# for i in range(n_examples):
# t = high_f1_features[attr_idxs_cf[i]]
# features_to_add.append(t[torch.isin(t, torch.where(cf_active[i])[0])][:num_exchange])
# features_to_add = torch.stack(features_to_add, dim=0).long()
### vectorized way to get the features to add/remove
features_to_remove = get_top_k_features_per_prompt(attr_idxs_clean, clean_active, high_f1_features, num_exchange)
features_to_add = get_top_k_features_per_prompt(attr_idxs_cf, cf_active, high_f1_features, num_exchange)
### now, perform the edits
W_dec = encoder.W_dec.detach() # (hidden, dim)
# shape (batch, num_exchange)
coeffs_to_remove = torch.stack([magnitudes_clean[range(n_examples), features_to_remove[:, i]] for i in range(num_exchange)], dim=1)
coeffs_to_add = torch.stack([magnitudes_cf[range(n_examples), features_to_add[:, i]] for i in range(num_exchange)], dim=1)
# shape (batch, num_exchange, dim)
decoders_to_remove = W_dec[features_to_remove, :]
decoders_to_add = W_dec[features_to_add, :]
to_remove = einsum("batch num_exchange, batch num_exchange dim -> batch dim", coeffs_to_remove, decoders_to_remove)
to_add = einsum("batch num_exchange, batch num_exchange dim -> batch dim", coeffs_to_add, decoders_to_add)
A_edited_normalized = A_clean_normalized - to_remove + to_add
# A_edited of shape (batch, dim)
# features_to_remove: indices of the features to remove, of shape (batch, num_exchange)
# features_to_add: indices of the features to add, of shape (batch, num_exchange)
return A_edited_normalized * normalization_scale, features_to_remove, features_to_add
@op(__allow_side_effects__=True)
@batched(args=['A_clean_normalized', 'A_cf_normalized'], n_outputs=5, reducer='cat', verbose=False)
def get_edit_using_sae_opt(
A_clean_normalized: Tensor,
A_cf_normalized: Tensor,
encoder: Union[VanillaAutoEncoder, GatedAutoEncoder, AttributionAutoEncoder],
num_exchange: int,
normalization_scale: float,
diff_to_use: Literal['reconstruction', 'activation'] = 'activation', # gives better results
batch_size: int = 100,
) -> Tuple[Tensor, Any, Any, Tensor, Tensor]:
"""
Greedily solve the optimization problem of subtracting/adding the fewest
features to minimize the norm.
"""
n_examples = A_clean_normalized.shape[0]
recons_clean = encoder.get_reconstructions(A_clean_normalized)
recons_cf = encoder.get_reconstructions(A_cf_normalized)
magnitudes_clean = encoder.get_feature_magnitudes(A_clean_normalized)
magnitudes_cf = encoder.get_feature_magnitudes(A_cf_normalized)
if diff_to_use == 'reconstruction':
diff = recons_cf - recons_clean # shape (batch, dim)
elif diff_to_use == 'activation':
diff = A_cf_normalized - A_clean_normalized
else:
raise ValueError(f"Invalid value for `diff_to_use`: {diff_to_use}")
W_dec = encoder.W_dec.detach().clone()
def optimize_vectorized(num_exchange:int):
current_sums = torch.zeros_like(diff) # shape (batch, dim)
best_features_list = []
best_scores_list = []
# initialize the *differences* between each respective feature's
# contribution in the cf and clean reconstructions
feature_diffs = einsum('batch hidden, hidden dim -> batch hidden dim', magnitudes_cf-magnitudes_clean, W_dec)
for i in range(num_exchange):
a = current_sums.unsqueeze(1) + feature_diffs - diff.unsqueeze(1) # shape (batch, hidden, dim)
scores = a.norm(dim=-1) # (batch, hidden)
best_features = scores.argmin(dim=1) # (batch,)
best_scores = scores[torch.arange(n_examples), best_features] # (batch,)
best_scores_list.append(best_scores)
best_features_list.append(best_features)
current_sums += feature_diffs[torch.arange(n_examples), best_features, :] # (batch, dim)
# set the contributions of the features we edited to zero to avoid them in the next round
feature_diffs[torch.arange(n_examples), best_features, :] = 0.0
# the features we changed during opt
best_features = torch.stack(best_features_list, dim=1) # of shape (num_examples, n_exchange)
best_scores = torch.stack(best_scores_list, dim=1)
# the hidden activations of the edited features on the clean side
edited_clean = torch.stack([magnitudes_clean[range(n_examples), best_features[:, i]] for i in range(num_exchange)], dim=1)
# the hidden activations of the edited features on the cf side
edited_cf = torch.stack([magnitudes_cf[range(n_examples), best_features[:, i]] for i in range(num_exchange)], dim=1)
return best_features, best_scores, current_sums, edited_clean, edited_cf
best_features, best_scores, deltas, edited_clean, edited_cf = optimize_vectorized(num_exchange)
A_edited_normalized = A_clean_normalized + deltas
return A_edited_normalized * normalization_scale, best_features, best_scores, edited_clean, edited_cf
# @op
# def get_sae_reconstructions(
# encoder: Union[AutoEncoder, SparseAutoencoder],
# A: torch.Tensor,
# normalization_scale: Optional[torch.Tensor],
# ) -> Tensor:
# is_webtext_sae = get_is_webtext_sae(encoder=encoder)
# use_normalization = (normalization_scale is not None and (not is_webtext_sae))
# if use_normalization:
# A = A / normalization_scale
# with torch.no_grad():
# if is_webtext_sae:
# encoder = encoder.to(A.device)
# recons, _ = encoder(A)
# else:
# recons = encoder(A)[1]
# if use_normalization:
# recons = recons * normalization_scale
# return recons
from circuit_utils import get_forced_hook
def remove_features(
A: Tensor,
encoder: Union[VanillaAutoEncoder, GatedAutoEncoder],
feature_magnitudes: Tensor, # (batch, hidden)
feature_idxs: Tensor, # (num_remove)
):
"""
Edit activation by removing the given feature indices
"""
W_dec = encoder.W_dec.detach() # (hidden, dim)
feature_contribution = einsum('batch hidden, hidden dim -> batch dim', feature_magnitudes[:, feature_idxs], W_dec[feature_idxs, :])
A = A - feature_contribution
return A
def keep_only_features(
A: Tensor,
encoder: Union[VanillaAutoEncoder, GatedAutoEncoder],
feature_magnitudes: Tensor, # (batch, hidden)
feature_idxs: Tensor, # (num_remove)
):
"""
Edit activation by removing all features except the given feature indices
"""
W_dec = encoder.W_dec.detach() # (hidden, dim)
n_features = W_dec.shape[0]
feature_idxs_to_remove = torch.tensor([i for i in range(n_features) if i not in feature_idxs], device=feature_idxs.device).long()
feature_contribution = einsum('batch hidden, hidden dim -> batch dim', feature_magnitudes[:, feature_idxs_to_remove], W_dec[feature_idxs_to_remove, :])
A = A - feature_contribution
return A
@op
def get_interp_approximation_intervention(
prompts: Any, # List[Prompt]
nodes: List[Node],
As: List[Tensor],
batch_size: int,
encoders: List[Union[VanillaAutoEncoder, GatedAutoEncoder]],
features: List[Tensor], # List[Tensor]
keep_or_remove: Literal['keep', 'remove'],
model_id: str = 'gpt2small',
) -> Tensor:
"""
Run activation patch that either removes or keeps only the chosen features
from the activation. This saves memory by avoiding the storage of the
edited activations.
"""
model = get_model_obj(model_id)
n = len(prompts)
n_batches = (n + batch_size - 1) // batch_size
answer_logits_list = []
is_webtext_sae = get_is_webtext_sae(encoder=encoders[0])
if is_webtext_sae:
assert all(x is None for x in normalization_scales)
for i in tqdm(range(n_batches)):
batch_indices = slice(i * batch_size, (i + 1) * batch_size)
prompts_batch = prompts[batch_indices]
batch_dataset = PromptDataset(prompts_batch, model=model)
As_batches = [A[batch_indices] for A in As]
As_edited = []
for A, encoder, normalization_scale, node, feature_idxs in zip(As_batches, encoders, normalization_scales, nodes, features):
if normalization_scale is None:
normalization_scale = 1.0
with torch.no_grad():
if is_webtext_sae:
encoder = encoder.to(A.device)
encoder_acts = encoder(A)[1]
else:
encoder_acts = encoder(A / normalization_scale)[2]
if keep_or_remove == 'remove':
A_edited = remove_features(A / normalization_scale, encoder, encoder_acts, feature_idxs)
elif keep_or_remove == 'keep':
A_edited = keep_only_features(A / normalization_scale, encoder, encoder_acts, feature_idxs)
A_edited = A_edited * normalization_scale
As_edited.append(A_edited)
hooks = [get_forced_hook(prompts=prompts_batch, node=node, A=A_edited) for node, A_edited in zip(nodes, As_edited)]
changed_logits = model.run_with_hooks(batch_dataset.tokens, fwd_hooks=hooks)[:, -1, :]
answer_logits = changed_logits.gather(dim=-1, index=batch_dataset.answer_tokens.cuda())
answer_logits_list.append(answer_logits)
answer_logits = torch.cat(answer_logits_list, dim=0)
return answer_logits
# ### what
# @torch.no_grad()
# def get_freqs(encoder: AutoEncoder, A: Tensor, batch_size: Optional[int] = None) -> Tuple[Tensor, float]:
# """
# Get the feature frequencies for the given activations, and the fraction of
# dead neurons.
# """
# act_freq_scores = torch.zeros(encoder.d_hidden, dtype=torch.float32).cuda()
# total = 0
# if batch_size is None:
# num_batches = 1
# batch_size = A.shape[0]
# else:
# num_batches = A.shape[0] // batch_size
# with torch.no_grad():
# for i in range(num_batches):
# A_batch = A[i*batch_size:(i+1)*batch_size]
# acts = encoder(A_batch)[2]
# act_freq_scores += (acts > 0).sum(0)
# total += acts.shape[0]
# act_freq_scores /= total
# frac_dead = (act_freq_scores==0).float().mean().item()
# return act_freq_scores, frac_dead
@op
def get_activation_distance(
A_target: Tensor,
A_edited: Tensor,
A_target_grad: Optional[Tensor],
method: Literal['l2', 'attribution'],
) -> float:
"""
Compute a number measuring the distance between the target and edited
activations. Note that "distances" computed using different methods cannot
be compared meaningfully.
"""
if method == 'l2':
return (A_target - A_edited).norm(dim=1).mean()
elif method == 'attribution':
return ((A_target-A_edited)*A_target_grad).abs().mean()
else:
raise ValueError()
def get_feature_weights(
encoder: Union[VanillaAutoEncoder, GatedAutoEncoder, AttributionAutoEncoder, TopKAutoEncoder],
A_normalized: Tensor,
batch_size: int,
) -> Tuple[Tensor, Tensor]:
with torch.no_grad():
recons = encoder.get_reconstructions(A_normalized)
acts = encoder.get_feature_magnitudes(A_normalized)
num_examples = A_normalized.shape[0]
num_batches = num_examples // batch_size
feature_weights_batches = []
for i in tqdm(range(num_batches), disable=False):
acts_batch = acts[i*batch_size:(i+1)*batch_size]
centered_recons_batch = recons[i*batch_size:(i+1)*batch_size] - encoder.b_dec.detach().unsqueeze(0)
centered_recons_norms = centered_recons_batch.norm(dim=-1, keepdim=True)
feature_weights = einsum('batch hidden, hidden dim, batch dim -> batch hidden', acts_batch, encoder.W_dec.detach(), centered_recons_batch) / centered_recons_norms**2
feature_weights_batches.append(feature_weights)
feature_weights = torch.cat(feature_weights_batches, dim=0)
sums = feature_weights.sum(dim=1)
nonzero_sums = sums[sums != 0]
# set the nan values to 1 in `nonzero_sums`
nonzero_sums[torch.isnan(nonzero_sums)] = 1
if nonzero_sums[(nonzero_sums - 1).abs() > 0.05].shape[0] > 10:
print(f'Found > 10 nonzero_sums that are not 1: {nonzero_sums[(nonzero_sums - 1).abs() > 0.05]}')
return feature_weights, acts
@op(__allow_side_effects__=True)
def compute_removed_weight(
encoder: Union[VanillaAutoEncoder, GatedAutoEncoder, AttributionAutoEncoder, TopKAutoEncoder],
A_normalized: Tensor,
batch_size: int,
best_features: Tensor,
) -> Tensor:
weights, _ = get_feature_weights(encoder, A_normalized, batch_size,)
best_weights = torch.stack([weights[range(A_normalized.shape[0]), best_features[:, i]] for i in range(best_features.shape[1])], dim=1)
return best_weights.sum(dim=1)