-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
672 lines (595 loc) · 35.7 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
from setuptools import setup, find_packages
import subprocess
import sys
import warnings
import os
# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))
torch_dir = torch.__path__[0]
# https://github.com/pytorch/pytorch/pull/71881
# For the extensions which have rocblas_gemm_flags_fp16_alt_impl we need to make sure if at::BackwardPassGuard exists.
# It helps the extensions be backward compatible with old PyTorch versions.
# The check and ROCM_BACKWARD_PASS_GUARD in nvcc/hipcc args can be retired once the PR is merged into PyTorch upstream.
context_file = os.path.join(torch_dir, "include", "ATen", "Context.h")
if os.path.exists(context_file):
lines = open(context_file, 'r').readlines()
found_Backward_Pass_Guard = False
found_ROCmBackward_Pass_Guard = False
for line in lines:
if "BackwardPassGuard" in line:
# BackwardPassGuard has been renamed to ROCmBackwardPassGuard
# https://github.com/pytorch/pytorch/pull/71881/commits/4b82f5a67a35406ffb5691c69e6b4c9086316a43
if "ROCmBackwardPassGuard" in line:
found_ROCmBackward_Pass_Guard = True
else:
found_Backward_Pass_Guard = True
break
found_aten_atomic_header = False
if os.path.exists(os.path.join(torch_dir, "include", "ATen", "Atomic.cuh")):
found_aten_atomic_header = True
def get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir)
torch_binary_major = torch.version.cuda.split(".")[0]
torch_binary_minor = torch.version.cuda.split(".")[1]
print("\nCompiling cuda extensions with")
print(raw_output + "from " + cuda_dir + "/bin\n")
if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor):
raise RuntimeError(
"Cuda extensions are being compiled with a version of Cuda that does "
"not match the version used to compile Pytorch binaries. "
"Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda)
+ "In some cases, a minor-version mismatch will not cause later errors: "
"https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. "
"You can try commenting out this check (at your own risk)."
)
def raise_if_cuda_home_none(global_option: str) -> None:
if CUDA_HOME is not None:
return
raise RuntimeError(
f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? "
"If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
"only images whose names contain 'devel' will provide nvcc."
)
def append_nvcc_threads(nvcc_extra_args):
_, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2:
return nvcc_extra_args + ["--threads", "4"]
return nvcc_extra_args
def check_cudnn_version_and_warn(global_option: str, required_cudnn_version: int) -> bool:
cudnn_available = torch.backends.cudnn.is_available()
cudnn_version = torch.backends.cudnn.version() if cudnn_available else None
if not (cudnn_available and (cudnn_version >= required_cudnn_version)):
warnings.warn(
f"Skip `{global_option}` as it requires cuDNN {required_cudnn_version} or later, "
f"but {'cuDNN is not available' if not cudnn_available else cudnn_version}"
)
return False
return True
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
def check_if_rocm_pytorch():
is_rocm_pytorch = False
if TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 5):
from torch.utils.cpp_extension import ROCM_HOME
is_rocm_pytorch = True if ((torch.version.hip is not None) and (ROCM_HOME is not None)) else False
return is_rocm_pytorch
IS_ROCM_PYTORCH = check_if_rocm_pytorch()
if not torch.cuda.is_available() and not IS_ROCM_PYTORCH:
# https://github.com/NVIDIA/apex/issues/486
# Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
# which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
print(
"\nWarning: Torch did not find available GPUs on this system.\n",
"If your intention is to cross-compile, this is not an error.\n"
"By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
"Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
"and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
"If you wish to cross-compile for a single specific architecture,\n"
'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n',
)
if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None:
_, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) == 11:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
if int(bare_metal_minor) > 0:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
else:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"
elif not torch.cuda.is_available() and IS_ROCM_PYTORCH:
print('\nWarning: Torch did not find available GPUs on this system.\n',
'If your intention is to cross-compile, this is not an error.\n'
'By default, Apex will cross-compile for the same gfx targets\n'
'used by default in ROCm PyTorch\n')
if TORCH_MAJOR == 0 and TORCH_MINOR < 4:
raise RuntimeError(
"Apex requires Pytorch 0.4 or newer.\nThe latest stable release can be obtained from https://pytorch.org/"
)
# cmdclass = {}
ext_modules = []
extras = {}
if "--cpp_ext" in sys.argv or "--cuda_ext" in sys.argv:
if TORCH_MAJOR == 0:
raise RuntimeError("--cpp_ext requires Pytorch 1.0 or later, "
"found torch.__version__ = {}".format(torch.__version__))
if "--cpp_ext" in sys.argv:
sys.argv.remove("--cpp_ext")
ext_modules.append(CppExtension("apex_C", ["csrc/flatten_unflatten.cpp"]))
# Set up macros for forward/backward compatibility hack around
# https://github.com/pytorch/pytorch/commit/4404762d7dd955383acee92e6f06b48144a0742e
# and
# https://github.com/NVIDIA/apex/issues/456
# https://github.com/pytorch/pytorch/commit/eb7b39e02f7d75c26d8a795ea8c7fd911334da7e#diff-4632522f237f1e4e728cb824300403ac
version_ge_1_1 = []
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 0):
version_ge_1_1 = ["-DVERSION_GE_1_1"]
version_ge_1_3 = []
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 2):
version_ge_1_3 = ["-DVERSION_GE_1_3"]
version_ge_1_5 = []
if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 4):
version_ge_1_5 = ["-DVERSION_GE_1_5"]
version_dependent_macros = version_ge_1_1 + version_ge_1_3 + version_ge_1_5
if "--distributed_adam" in sys.argv or "--cuda_ext" in sys.argv:
if "--distributed_adam" in sys.argv:
sys.argv.remove("--distributed_adam")
if torch.utils.cpp_extension.CUDA_HOME is None and not IS_ROCM_PYTORCH:
raise RuntimeError("--distributed_adam was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
nvcc_args_adam = ['-O3', '--use_fast_math'] + version_dependent_macros
hipcc_args_adam = ['-O3'] + version_dependent_macros
ext_modules.append(
CUDAExtension(name='distributed_adam_cuda',
sources=['apex/contrib/csrc/optimizers/multi_tensor_distopt_adam.cpp',
'apex/contrib/csrc/optimizers/multi_tensor_distopt_adam_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc'),
os.path.join(this_dir, 'apex/contrib/csrc/optimizers')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros,
'nvcc':nvcc_args_adam if not IS_ROCM_PYTORCH else hipcc_args_adam}))
if "--distributed_lamb" in sys.argv or "--cuda_ext" in sys.argv:
if "--distributed_lamb" in sys.argv:
sys.argv.remove("--distributed_lamb")
if torch.utils.cpp_extension.CUDA_HOME is None and not IS_ROCM_PYTORCH:
raise RuntimeError("--distributed_lamb was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
print ("INFO: Building the distributed_lamb extension.")
nvcc_args_distributed_lamb = ['-O3', '--use_fast_math'] + version_dependent_macros
hipcc_args_distributed_lamb = ['-O3'] + version_dependent_macros
ext_modules.append(
CUDAExtension(name='distributed_lamb_cuda',
sources=['apex/contrib/csrc/optimizers/multi_tensor_distopt_lamb.cpp',
'apex/contrib/csrc/optimizers/multi_tensor_distopt_lamb_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros,
'nvcc': nvcc_args_distributed_lamb if not IS_ROCM_PYTORCH else hipcc_args_distributed_lamb}))
if "--cuda_ext" in sys.argv:
if torch.utils.cpp_extension.CUDA_HOME is None and not IS_ROCM_PYTORCH:
raise RuntimeError("--cuda_ext was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
if not IS_ROCM_PYTORCH:
check_cuda_torch_binary_vs_bare_metal(torch.utils.cpp_extension.CUDA_HOME)
print ("INFO: Building the multi-tensor apply extension.")
nvcc_args_multi_tensor = ['-lineinfo', '-O3', '--use_fast_math'] + version_dependent_macros
hipcc_args_multi_tensor = ['-O3'] + version_dependent_macros
ext_modules.append(
CUDAExtension(name='amp_C',
sources=['csrc/amp_C_frontend.cpp',
'csrc/multi_tensor_sgd_kernel.cu',
'csrc/multi_tensor_scale_kernel.cu',
'csrc/multi_tensor_axpby_kernel.cu',
'csrc/multi_tensor_l2norm_kernel.cu',
'csrc/multi_tensor_l2norm_kernel_mp.cu',
'csrc/multi_tensor_l2norm_scale_kernel.cu',
'csrc/multi_tensor_lamb_stage_1.cu',
'csrc/multi_tensor_lamb_stage_2.cu',
'csrc/multi_tensor_adam.cu',
'csrc/multi_tensor_adagrad.cu',
'csrc/multi_tensor_novograd.cu',
'csrc/multi_tensor_lamb.cu',
'csrc/multi_tensor_lamb_mp.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc': nvcc_args_multi_tensor if not IS_ROCM_PYTORCH else hipcc_args_multi_tensor}))
print ("INFO: Building syncbn extension.")
ext_modules.append(
CUDAExtension(name='syncbn',
sources=['csrc/syncbn.cpp',
'csrc/welford.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc':['-O3'] + version_dependent_macros}))
nvcc_args_layer_norm = ['-maxrregcount=50', '-O3', '--use_fast_math'] + version_dependent_macros
hipcc_args_layer_norm = ['-O3'] + version_dependent_macros
print ("INFO: Building fused layernorm extension.")
ext_modules.append(
CUDAExtension(name='fused_layer_norm_cuda',
sources=['csrc/layer_norm_cuda.cpp',
'csrc/layer_norm_cuda_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc': nvcc_args_layer_norm if not IS_ROCM_PYTORCH else hipcc_args_layer_norm}))
hipcc_args_mlp = ['-O3'] + version_dependent_macros
if found_Backward_Pass_Guard:
hipcc_args_mlp = hipcc_args_mlp + ['-DBACKWARD_PASS_GUARD'] + ['-DBACKWARD_PASS_GUARD_CLASS=BackwardPassGuard']
if found_ROCmBackward_Pass_Guard:
hipcc_args_mlp = hipcc_args_mlp + ['-DBACKWARD_PASS_GUARD'] + ['-DBACKWARD_PASS_GUARD_CLASS=ROCmBackwardPassGuard']
print ("INFO: Building the MLP Extension.")
ext_modules.append(
CUDAExtension(name='mlp_cuda',
sources=['csrc/mlp.cpp',
'csrc/mlp_cuda.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc':['-O3'] + version_dependent_macros
if not IS_ROCM_PYTORCH else hipcc_args_mlp}))
ext_modules.append(
CUDAExtension(name='fused_dense_cuda',
sources=['csrc/fused_dense.cpp',
'csrc/fused_dense_cuda.cu'],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc':['-O3'] + version_dependent_macros}))
nvcc_args_transformer = ['-O3',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda'] + version_dependent_macros
hipcc_args_transformer = ['-O3',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__'] + version_dependent_macros
ext_modules.append(
CUDAExtension(name='scaled_upper_triang_masked_softmax_cuda',
sources=['csrc/megatron/scaled_upper_triang_masked_softmax.cpp',
'csrc/megatron/scaled_upper_triang_masked_softmax_cuda.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc':nvcc_args_transformer if not IS_ROCM_PYTORCH else hipcc_args_transformer}))
ext_modules.append(
CUDAExtension(name='scaled_masked_softmax_cuda',
sources=['csrc/megatron/scaled_masked_softmax.cpp',
'csrc/megatron/scaled_masked_softmax_cuda.cu'],
include_dirs=[os.path.join(this_dir, 'csrc'),
os.path.join(this_dir, 'csrc/megatron')],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc':nvcc_args_transformer if not IS_ROCM_PYTORCH else hipcc_args_transformer}))
if "--bnp" in sys.argv or "--cuda_ext" in sys.argv:
if "--bnp" in sys.argv:
sys.argv.remove("--bnp")
if torch.utils.cpp_extension.CUDA_HOME is None and not IS_ROCM_PYTORCH:
raise RuntimeError("--bnp was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
ext_modules.append(
CUDAExtension(name='bnp',
sources=['apex/contrib/csrc/groupbn/batch_norm.cu',
'apex/contrib/csrc/groupbn/ipc.cu',
'apex/contrib/csrc/groupbn/interface.cpp',
'apex/contrib/csrc/groupbn/batch_norm_add_relu.cu'],
include_dirs=[os.path.join(this_dir, 'csrc'),
os.path.join(this_dir, 'apex/contrib/csrc/groupbn')],
extra_compile_args={'cxx': [] + version_dependent_macros,
'nvcc':['-DCUDA_HAS_FP16=1',
'-D__CUDA_NO_HALF_OPERATORS__',
'-D__CUDA_NO_HALF_CONVERSIONS__',
'-D__CUDA_NO_HALF2_OPERATORS__'] + version_dependent_macros}))
if "--xentropy" in sys.argv or "--cuda_ext" in sys.argv:
if "--xentropy" in sys.argv:
sys.argv.remove("--xentropy")
if torch.utils.cpp_extension.CUDA_HOME is None and not IS_ROCM_PYTORCH:
raise RuntimeError("--xentropy was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
print ("INFO: Building the xentropy extension.")
ext_modules.append(
CUDAExtension(name='xentropy_cuda',
sources=['apex/contrib/csrc/xentropy/interface.cpp',
'apex/contrib/csrc/xentropy/xentropy_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc'),
os.path.join(this_dir, 'apex/contrib/csrc/xentropy')],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc':['-O3'] + version_dependent_macros}))
if "--focal_loss" in sys.argv or "--cuda_ext" in sys.argv:
if "--focal_loss" in sys.argv:
sys.argv.remove("--focal_loss")
ext_modules.append(
CUDAExtension(
name='focal_loss_cuda',
sources=[
'apex/contrib/csrc/focal_loss/focal_loss_cuda.cpp',
'apex/contrib/csrc/focal_loss/focal_loss_cuda_kernel.cu',
],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={
'cxx': ['-O3'] + version_dependent_macros,
'nvcc':(['-O3', '--use_fast_math', '--ftz=false'] if not IS_ROCM_PYTORCH else ['-O3']) + version_dependent_macros,
},
)
)
if "--index_mul_2d" in sys.argv or "--cuda_ext" in sys.argv:
if "--index_mul_2d" in sys.argv:
sys.argv.remove("--index_mul_2d")
args_index_mul_2d = ['-O3']
if not IS_ROCM_PYTORCH:
args_index_mul_2d += ['--use_fast_math', '--ftz=false']
if found_aten_atomic_header:
args_index_mul_2d += ['-DATEN_ATOMIC_HEADER']
ext_modules.append(
CUDAExtension(
name='fused_index_mul_2d',
sources=[
'apex/contrib/csrc/index_mul_2d/index_mul_2d_cuda.cpp',
'apex/contrib/csrc/index_mul_2d/index_mul_2d_cuda_kernel.cu',
],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={
'cxx': ['-O3'] + version_dependent_macros,
'nvcc': args_index_mul_2d + version_dependent_macros,
},
)
)
if "--deprecated_fused_adam" in sys.argv or "--cuda_ext" in sys.argv:
if "--deprecated_fused_adam" in sys.argv:
sys.argv.remove("--deprecated_fused_adam")
if torch.utils.cpp_extension.CUDA_HOME is None and not IS_ROCM_PYTORCH:
raise RuntimeError("--deprecated_fused_adam was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
print ("INFO: Building deprecated fused adam extension.")
nvcc_args_fused_adam = ['-O3', '--use_fast_math'] + version_dependent_macros
hipcc_args_fused_adam = ['-O3'] + version_dependent_macros
ext_modules.append(
CUDAExtension(name='fused_adam_cuda',
sources=['apex/contrib/csrc/optimizers/fused_adam_cuda.cpp',
'apex/contrib/csrc/optimizers/fused_adam_cuda_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc'),
os.path.join(this_dir, 'apex/contrib/csrc/optimizers')],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc' : nvcc_args_fused_adam if not IS_ROCM_PYTORCH else hipcc_args_fused_adam}))
if "--deprecated_fused_lamb" in sys.argv or "--cuda_ext" in sys.argv:
if "--deprecated_fused_lamb" in sys.argv:
sys.argv.remove("--deprecated_fused_lamb")
if torch.utils.cpp_extension.CUDA_HOME is None and not IS_ROCM_PYTORCH:
raise RuntimeError("--deprecated_fused_lamb was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
print ("INFO: Building deprecated fused lamb extension.")
nvcc_args_fused_lamb = ['-O3', '--use_fast_math'] + version_dependent_macros
hipcc_args_fused_lamb = ['-O3'] + version_dependent_macros
ext_modules.append(
CUDAExtension(name='fused_lamb_cuda',
sources=['apex/contrib/csrc/optimizers/fused_lamb_cuda.cpp',
'apex/contrib/csrc/optimizers/fused_lamb_cuda_kernel.cu',
'csrc/multi_tensor_l2norm_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args = nvcc_args_fused_lamb if not IS_ROCM_PYTORCH else hipcc_args_fused_lamb))
# Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
# See https://github.com/pytorch/pytorch/pull/70650
generator_flag = []
torch_dir = torch.__path__[0]
if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
generator_flag = ["-DOLD_GENERATOR_PATH"]
if "--fast_layer_norm" in sys.argv:
sys.argv.remove("--fast_layer_norm")
raise_if_cuda_home_none("--fast_layer_norm")
# Check, if CUDA11 is installed for compute capability 8.0
cc_flag = []
_, bare_metal_major, _ = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) >= 11:
cc_flag.append("-gencode")
cc_flag.append("arch=compute_80,code=sm_80")
if CUDA_HOME is None and not IS_ROCM_PYTORCH:
raise RuntimeError("--fast_layer_norm was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
# Check, if CUDA11 is installed for compute capability 8.0
cc_flag = []
_, bare_metal_major, _ = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) >= 11:
cc_flag.append('-gencode')
cc_flag.append('arch=compute_80,code=sm_80')
if "--fmha" in sys.argv:
sys.argv.remove("--fmha")
raise_if_cuda_home_none("--fmha")
# Check, if CUDA11 is installed for compute capability 8.0
cc_flag = []
_, bare_metal_major, _ = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) < 11:
raise RuntimeError("--fmha only supported on SM80")
cc_flag.append("-gencode")
cc_flag.append("arch=compute_80,code=sm_80")
if CUDA_HOME is None and not IS_ROCM_PYTORCH:
raise RuntimeError("--fmha was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
# Check, if CUDA11 is installed for compute capability 8.0
cc_flag = []
_, bare_metal_major, _ = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) < 11:
raise RuntimeError("--fmha only supported on SM80")
ext_modules.append(
CUDAExtension(name='fmhalib',
sources=[
'apex/contrib/csrc/fmha/fmha_api.cpp',
'apex/contrib/csrc/fmha/src/fmha_noloop_reduce.cu',
'apex/contrib/csrc/fmha/src/fmha_fprop_fp16_128_64_kernel.sm80.cu',
'apex/contrib/csrc/fmha/src/fmha_fprop_fp16_256_64_kernel.sm80.cu',
'apex/contrib/csrc/fmha/src/fmha_fprop_fp16_384_64_kernel.sm80.cu',
'apex/contrib/csrc/fmha/src/fmha_fprop_fp16_512_64_kernel.sm80.cu',
'apex/contrib/csrc/fmha/src/fmha_dgrad_fp16_128_64_kernel.sm80.cu',
'apex/contrib/csrc/fmha/src/fmha_dgrad_fp16_256_64_kernel.sm80.cu',
'apex/contrib/csrc/fmha/src/fmha_dgrad_fp16_384_64_kernel.sm80.cu',
'apex/contrib/csrc/fmha/src/fmha_dgrad_fp16_512_64_kernel.sm80.cu',
],
extra_compile_args={'cxx': ['-O3',
] + version_dependent_macros + generator_flag,
'nvcc':['-O3',
'-gencode', 'arch=compute_80,code=sm_80',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag},
include_dirs=[os.path.join(this_dir, "apex/contrib/csrc"), os.path.join(this_dir, "apex/contrib/csrc/fmha/src")]))
if "--fast_multihead_attn" in sys.argv or "--cuda_ext" in sys.argv:
if "--fast_multihead_attn" in sys.argv:
sys.argv.remove("--fast_multihead_attn")
if torch.utils.cpp_extension.CUDA_HOME is None and not IS_ROCM_PYTORCH:
raise RuntimeError("--fast_multihead_attn was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else:
# Check, if CUDA11 is installed for compute capability 8.0
cc_flag = []
if not IS_ROCM_PYTORCH:
_, bare_metal_major, _ = get_cuda_bare_metal_version(torch.utils.cpp_extension.CUDA_HOME)
if int(bare_metal_major) >= 11:
cc_flag.append('-gencode')
cc_flag.append('arch=compute_80,code=sm_80')
cc_flag.append('-gencode')
cc_flag.append('arch=compute_86,code=sm_86')
subprocess.run(["git", "submodule", "update", "--init", "apex/contrib/csrc/multihead_attn/cutlass"])
nvcc_args_mha = ['-O3',
'-gencode',
'arch=compute_70,code=sm_70',
'-Iapex/contrib/csrc/multihead_attn/cutlass',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag
hipcc_args_mha = ['-O3',
'-Iapex/contrib/csrc/multihead_attn/cutlass',
'-I/opt/rocm/include/hiprand',
'-I/opt/rocm/include/rocrand',
'-U__HIP_NO_HALF_OPERATORS__',
'-U__HIP_NO_HALF_CONVERSIONS__'] + version_dependent_macros + generator_flag
if found_Backward_Pass_Guard:
hipcc_args_mha = hipcc_args_mha + ['-DBACKWARD_PASS_GUARD'] + ['-DBACKWARD_PASS_GUARD_CLASS=BackwardPassGuard']
if found_ROCmBackward_Pass_Guard:
hipcc_args_mha = hipcc_args_mha + ['-DBACKWARD_PASS_GUARD'] + ['-DBACKWARD_PASS_GUARD_CLASS=ROCmBackwardPassGuard']
ext_modules.append(
CUDAExtension(
name='fast_multihead_attn',
sources=[
'apex/contrib/csrc/multihead_attn/multihead_attn_frontend.cpp',
'apex/contrib/csrc/multihead_attn/additive_masked_softmax_dropout_cuda.cu',
"apex/contrib/csrc/multihead_attn/masked_softmax_dropout_cuda.cu",
"apex/contrib/csrc/multihead_attn/encdec_multihead_attn_cuda.cu",
"apex/contrib/csrc/multihead_attn/encdec_multihead_attn_norm_add_cuda.cu",
"apex/contrib/csrc/multihead_attn/self_multihead_attn_cuda.cu",
"apex/contrib/csrc/multihead_attn/self_multihead_attn_bias_additive_mask_cuda.cu",
"apex/contrib/csrc/multihead_attn/self_multihead_attn_bias_cuda.cu",
"apex/contrib/csrc/multihead_attn/self_multihead_attn_norm_add_cuda.cu",
],
include_dirs=[os.path.join(this_dir, 'csrc'),
os.path.join(this_dir, 'apex/contrib/csrc/multihead_attn')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':nvcc_args_mha if not IS_ROCM_PYTORCH else hipcc_args_mha}
)
)
if "--transducer" in sys.argv or "--cuda_ext" in sys.argv:
if "--transducer" in sys.argv:
sys.argv.remove("--transducer")
if not IS_ROCM_PYTORCH:
raise_if_cuda_home_none("--transducer")
ext_modules.append(
CUDAExtension(
name="transducer_joint_cuda",
sources=[
"apex/contrib/csrc/transducer/transducer_joint.cpp",
"apex/contrib/csrc/transducer/transducer_joint_kernel.cu",
],
extra_compile_args={
"cxx": ["-O3"] + version_dependent_macros + generator_flag,
"nvcc": append_nvcc_threads(["-O3"] + version_dependent_macros + generator_flag) if not IS_ROCM_PYTORCH
else ["-O3"] + version_dependent_macros + generator_flag,
},
include_dirs=[os.path.join(this_dir, "csrc"), os.path.join(this_dir, "apex/contrib/csrc/multihead_attn")],
)
)
ext_modules.append(
CUDAExtension(
name="transducer_loss_cuda",
sources=[
"apex/contrib/csrc/transducer/transducer_loss.cpp",
"apex/contrib/csrc/transducer/transducer_loss_kernel.cu",
],
include_dirs=[os.path.join(this_dir, "csrc")],
extra_compile_args={
"cxx": ["-O3"] + version_dependent_macros,
"nvcc": append_nvcc_threads(["-O3"] + version_dependent_macros) if not IS_ROCM_PYTORCH
else ["-O3"] + version_dependent_macros,
},
)
)
# note (mkozuki): Now `--fast_bottleneck` option (i.e. apex/contrib/bottleneck) depends on `--peer_memory` and `--nccl_p2p`.
if "--fast_bottleneck" in sys.argv:
sys.argv.remove("--fast_bottleneck")
raise_if_cuda_home_none("--fast_bottleneck")
if check_cudnn_version_and_warn("--fast_bottleneck", 8400):
subprocess.run(["git", "submodule", "update", "--init", "apex/contrib/csrc/cudnn-frontend/"])
ext_modules.append(
CUDAExtension(
name="fast_bottleneck",
sources=["apex/contrib/csrc/bottleneck/bottleneck.cpp"],
include_dirs=[os.path.join(this_dir, "apex/contrib/csrc/cudnn-frontend/include")],
extra_compile_args={"cxx": ["-O3"] + version_dependent_macros + generator_flag},
)
)
if "--peer_memory" in sys.argv or "--cuda_ext" in sys.argv:
if "--peer_memory" in sys.argv:
sys.argv.remove("--peer_memory")
if not IS_ROCM_PYTORCH:
raise_if_cuda_home_none("--peer_memory")
ext_modules.append(
CUDAExtension(
name="peer_memory_cuda",
sources=[
"apex/contrib/csrc/peer_memory/peer_memory_cuda.cu",
"apex/contrib/csrc/peer_memory/peer_memory.cpp",
],
extra_compile_args={"cxx": ["-O3"] + version_dependent_macros + generator_flag},
)
)
if "--nccl_p2p" in sys.argv or "--cuda_ext" in sys.argv:
if "--nccl_p2p" in sys.argv:
sys.argv.remove("--nccl_p2p")
if not IS_ROCM_PYTORCH:
raise_if_cuda_home_none("--nccl_p2p")
ext_modules.append(
CUDAExtension(
name="nccl_p2p_cuda",
sources=[
"apex/contrib/csrc/nccl_p2p/nccl_p2p_cuda.cu",
"apex/contrib/csrc/nccl_p2p/nccl_p2p.cpp",
],
extra_compile_args={"cxx": ["-O3"] + version_dependent_macros + generator_flag},
)
)
if "--fused_conv_bias_relu" in sys.argv:
sys.argv.remove("--fused_conv_bias_relu")
raise_if_cuda_home_none("--fused_conv_bias_relu")
if check_cudnn_version_and_warn("--fused_conv_bias_relu", 8400):
subprocess.run(["git", "submodule", "update", "--init", "apex/contrib/csrc/cudnn-frontend/"])
ext_modules.append(
CUDAExtension(
name="fused_conv_bias_relu",
sources=["apex/contrib/csrc/conv_bias_relu/conv_bias_relu.cpp"],
include_dirs=[os.path.join(this_dir, "apex/contrib/csrc/cudnn-frontend/include")],
extra_compile_args={"cxx": ["-O3"] + version_dependent_macros + generator_flag},
)
)
if "--cuda_ext" in sys.argv:
sys.argv.remove("--cuda_ext")
setup(
name="apex",
version="0.1",
packages=find_packages(
exclude=("build", "csrc", "include", "tests", "dist", "docs", "tests", "examples", "apex.egg-info",)
),
description="PyTorch Extensions written by NVIDIA",
ext_modules=ext_modules,
cmdclass={'build_ext': BuildExtension} if ext_modules else {},
extras_require=extras,
)