-
Notifications
You must be signed in to change notification settings - Fork 33
/
main.py
289 lines (253 loc) · 13.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import argparse
import random
import numpy as np
from typing import Tuple
from config import Reader, Config, ContextEmb, lr_decay, simple_batching, evaluate_batch_insts, get_optimizer, write_results, batching_list_instances
from config import remove_entites
import time
from model.neuralcrf import NNCRF
import torch
from typing import List
from common import Instance
from termcolor import colored
import os
from config.utils import load_elmo_vec
import pickle
import tarfile
import shutil
import math
import itertools
def set_seed(opt, seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if opt.device.startswith("cuda"):
print("using GPU...", torch.cuda.current_device())
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def parse_arguments(parser):
###Training Hyperparameters
parser.add_argument('--device', type=str, default="cpu", choices=['cpu', 'cuda:0', 'cuda:1', 'cuda:2'],
help="GPU/CPU devices")
parser.add_argument('--seed', type=int, default=42, help="random seed")
parser.add_argument('--digit2zero', action="store_true", default=True,
help="convert the number to 0, make it true is better")
parser.add_argument('--dataset', type=str, default="conll2003")
parser.add_argument('--embedding_file', type=str, default="data/glove.6B.100d.txt",
help="we will be using random embeddings if file do not exist")
parser.add_argument('--embedding_dim', type=int, default=100)
parser.add_argument('--optimizer', type=str, default="sgd")
parser.add_argument('--learning_rate', type=float, default=0.01) ##only for sgd now
parser.add_argument('--momentum', type=float, default=0.0)
parser.add_argument('--l2', type=float, default=1e-8)
parser.add_argument('--lr_decay', type=float, default=0)
parser.add_argument('--batch_size', type=int, default=10, help="default batch size is 10 (works well)")
parser.add_argument('--num_epochs', type=int, default=100, help="Usually we set to 10.")
parser.add_argument('--train_num', type=int, default=-1, help="-1 means all the data")
parser.add_argument('--dev_num', type=int, default=-1, help="-1 means all the data")
parser.add_argument('--test_num', type=int, default=-1, help="-1 means all the data")
parser.add_argument('--entity_keep_ratio', type= float, default=0.5, help="the percentage of entities to be kept", choices=np.arange(0, 1.1, 0.1))
parser.add_argument('--num_outer_iterations', type= int , default= 10, help="Number of outer iterations for cross validation")
##model hyperparameter
parser.add_argument('--variant', type=str, default="hard", choices=["hard", "soft"], help="The hard or soft variant of the model")
parser.add_argument('--model_folder', type=str, default="english_model", help="The name to save the model files")
parser.add_argument('--hidden_dim', type=int, default=200, help="hidden size of the LSTM")
parser.add_argument('--dropout', type=float, default=0.5, help="dropout for embedding")
parser.add_argument('--use_char_rnn', type=int, default=1, choices=[0, 1], help="use character-level lstm, 0 or 1")
parser.add_argument('--context_emb', type=str, default="none", choices=["none", "elmo"],
help="contextual word embedding")
args = parser.parse_args()
for k in args.__dict__:
print(k + ": " + str(args.__dict__[k]))
return args
def train_model(config: Config, train_insts: List[List[Instance]], dev_insts: List[Instance], test_insts: List[Instance]):
train_num = sum([len(insts) for insts in train_insts])
print("[Training Info] number of training instances: %d" % (train_num))
dev_batches = batching_list_instances(config, dev_insts)
test_batches = batching_list_instances(config, test_insts)
model_folder = config.model_folder
res_folder = "results"
# if os.path.exists(model_folder):
# raise FileExistsError(f"The folder {model_folder} exists. Please either delete it or create a new one "
# f"to avoid override.")
print("[Training Info] The model will be saved to: %s.tar.gz" % (model_folder))
if not os.path.exists(model_folder):
os.makedirs(model_folder)
if not os.path.exists(res_folder):
os.makedirs(res_folder)
num_outer_iterations = config.num_outer_iterations
for iter in range(num_outer_iterations):
print(f"[Training Info] Running for {iter}th large iterations.")
model_names = [] #model names for each fold
train_batches = [batching_list_instances(config, insts) for insts in train_insts]
for fold_id, folded_train_insts in enumerate(train_insts):
print(f"[Training Info] Training fold {fold_id}.")
model_name = model_folder + f"/lstm_crf_{fold_id}.m"
model_names.append(model_name)
train_one(config=config, train_batches = train_batches[fold_id],
dev_insts=dev_insts, dev_batches=dev_batches, model_name=model_name)
# assign hard prediction to other folds
if config.variant == "hard":
print("\n\n[Data Info] Assigning labels for the HARD approach")
else:
print("\n\n[Data Info] Performing marginal decoding to assign the marginals")
for fold_id, folded_train_insts in enumerate(train_insts):
model = NNCRF(config)
model_name = model_names[fold_id]
model.load_state_dict(torch.load(model_name))
predict_with_constraints(config=config, model=model,
fold_batches = train_batches[1-fold_id],
folded_insts= train_insts[1 - fold_id]) ## set a new label id
print("\n\n")
print("[Training Info] Training the final model" )
all_train_insts = list(itertools.chain.from_iterable(train_insts))
model_name = model_folder + "/final_lstm_crf.m"
config_name = model_folder + "/config.conf"
res_name = res_folder + "/lstm_crf.results".format()
all_train_batches = batching_list_instances(config= config, insts=all_train_insts)
model = train_one(config = config, train_batches=all_train_batches, dev_insts=dev_insts, dev_batches=dev_batches,
model_name=model_name, config_name=config_name,test_insts=test_insts, test_batches=test_batches,result_filename=res_name)
print("Archiving the best Model...")
with tarfile.open(model_folder + "/" + model_folder + ".tar.gz", "w:gz") as tar:
tar.add(model_folder, arcname=os.path.basename(model_folder))
# print("The best dev: %.2f" % (best_dev[0]))
# print("The corresponding test: %.2f" % (best_test[0]))
# print("Final testing.")
model.load_state_dict(torch.load(model_name))
model.eval()
evaluate_model(config, model, test_batches, "test", test_insts)
write_results(res_name, test_insts)
def predict_with_constraints(config: Config, model: NNCRF, fold_batches: List[Tuple], folded_insts:List[Instance]):
batch_id = 0
batch_size = config.batch_size
model.eval()
for batch in fold_batches:
one_batch_insts = folded_insts[batch_id * batch_size:(batch_id + 1) * batch_size]
word_seq_lens = batch[1].cpu().numpy()
if config.variant == "hard":
with torch.no_grad():
batch_max_scores, batch_max_ids = model.decode(batch)
batch_max_ids = batch_max_ids.cpu().numpy()
for idx in range(len(batch_max_ids)):
length = word_seq_lens[idx]
prediction = batch_max_ids[idx][:length].tolist()
prediction = prediction[::-1]
one_batch_insts[idx].output_ids = prediction
else:
## means soft model, assign soft probabilit
with torch.no_grad():
marginals = model.get_marginal(batch)
marginals = marginals.cpu().numpy()
for idx in range(len(marginals)):
length = word_seq_lens[idx]
one_batch_insts[idx].marginals = marginals[idx, :length, :]
batch_id += 1
def train_one(config: Config, train_batches: List[Tuple], dev_insts: List[Instance],
dev_batches: List[Tuple], model_name: str, test_insts: List[Instance] = None,
test_batches: List[Tuple] = None, config_name: str = None, result_filename: str = None) -> NNCRF:
model = NNCRF(config)
model.train()
optimizer = get_optimizer(config, model)
epoch = config.num_epochs
best_dev_f1 = -1
saved_test_metrics = None
for i in range(1, epoch + 1):
epoch_loss = 0
start_time = time.time()
model.zero_grad()
if config.optimizer.lower() == "sgd":
optimizer = lr_decay(config, optimizer, i)
for index in np.random.permutation(len(train_batches)):
model.train()
loss = model(*train_batches[index])
epoch_loss += loss.item()
loss.backward()
optimizer.step()
model.zero_grad()
end_time = time.time()
print("Epoch %d: %.5f, Time is %.2fs" % (i, epoch_loss, end_time - start_time), flush=True)
model.eval()
# metric is [precision, recall, f_score]
dev_metrics = evaluate_model(config, model, dev_batches, "dev", dev_insts)
if test_insts is not None:
test_metrics = evaluate_model(config, model, test_batches, "test", test_insts)
if dev_metrics[2] > best_dev_f1:
print("saving the best model...")
best_dev_f1 = dev_metrics[2]
if test_insts is not None:
saved_test_metrics = test_metrics
torch.save(model.state_dict(), model_name)
# # Save the corresponding config as well.
if config_name:
f = open(config_name, 'wb')
pickle.dump(config, f)
f.close()
if result_filename:
write_results(result_filename, test_insts)
model.zero_grad()
if test_insts is not None:
print(f"The best dev F1: {best_dev_f1}" )
print(f"The corresponding test: {saved_test_metrics}")
return model
def evaluate_model(config: Config, model: NNCRF, batch_insts_ids, name: str, insts: List[Instance]):
## evaluation
metrics = np.asarray([0, 0, 0], dtype=int)
batch_id = 0
batch_size = config.batch_size
for batch in batch_insts_ids:
one_batch_insts = insts[batch_id * batch_size:(batch_id + 1) * batch_size]
with torch.no_grad():
batch_max_scores, batch_max_ids = model.decode(batch)
metrics += evaluate_batch_insts(batch_insts=one_batch_insts,
batch_pred_ids = batch_max_ids,
batch_gold_ids=batch[-1],
word_seq_lens= batch[1], idx2label=config.idx2labels)
batch_id += 1
p, total_predict, total_entity = metrics[0], metrics[1], metrics[2]
precision = p * 1.0 / total_predict * 100 if total_predict != 0 else 0
recall = p * 1.0 / total_entity * 100 if total_entity != 0 else 0
fscore = 2.0 * precision * recall / (precision + recall) if precision != 0 or recall != 0 else 0
print("[%s set] Precision: %.2f, Recall: %.2f, F1: %.2f" % (name, precision, recall, fscore), flush=True)
return [precision, recall, fscore]
def main():
parser = argparse.ArgumentParser(description="LSTM CRF implementation")
opt = parse_arguments(parser)
conf = Config(opt)
reader = Reader(conf.digit2zero)
set_seed(opt, conf.seed)
trains = reader.read_txt(conf.train_file, conf.train_num)
devs = reader.read_txt(conf.dev_file, conf.dev_num)
tests = reader.read_txt(conf.test_file, conf.test_num)
if conf.context_emb != ContextEmb.none:
print('[Data Info] Loading the ELMo vectors for all datasets.')
conf.context_emb_size = load_elmo_vec(conf.train_file + "." + conf.context_emb.name + ".vec", trains)
load_elmo_vec(conf.dev_file + "." + conf.context_emb.name + ".vec", devs)
load_elmo_vec(conf.test_file + "." + conf.context_emb.name + ".vec", tests)
conf.use_iobes(trains + devs + tests)
conf.build_label_idx(trains + devs + tests)
conf.build_word_idx(trains, devs, tests)
conf.build_emb_table()
conf.map_insts_ids(devs + tests)
print("[Data Info] num chars: " + str(conf.num_char))
print("[Data Info] num words: " + str(len(conf.word2idx)))
print(f"[Data Info] Removing {conf.entity_keep_ratio*100}% of entities from the training set")
print("[Data Info] Removing the entities")
## it will return the set of removed entities (for debug purpose)
_ = remove_entites(trains, conf)
# print(f"entities removed: {span_set}")
conf.map_insts_ids(trains)
random.shuffle(trains)
for inst in trains:
inst.is_prediction = [False] * len(inst.input)
if conf.variant == "soft":
inst.marginals = np.full((len(inst.input), conf.label_size), -1e10)
for pos, label in enumerate(inst.output):
if label == conf.O:
inst.is_prediction[pos] = True
if conf.variant == "soft":
inst.marginals[pos, conf.label2idx[label]] = 0
num_insts_in_fold = math.ceil(len(trains) / conf.num_folds)
trains = [trains[i * num_insts_in_fold: (i + 1) * num_insts_in_fold] for i in range(conf.num_folds)]
train_model(config=conf, train_insts=trains, dev_insts=devs, test_insts=tests)
if __name__ == "__main__":
main()