-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbench_model.py
161 lines (128 loc) · 5.51 KB
/
bench_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
import torch
import torch.onnx
from torchsummary import summary
from thop import profile
from import_models import import_models
import time
import os
from _utils import split_indices, get_default_device, DeviceDataLoader, to_device, fit, evaluate, accuracy, predict_image, printCPUInfo, select_device
import logging
import statistics
def select_model(models_dict):
print("List of Models to be Selected...")
print(f"There are {len(models_dict)} options:")
for key in models_dict.keys():
print(key)
blocked = True
model_name = input("Select a model from above: ")
for key in models_dict.keys():
if model_name == key:
print(f"Selecting {model_name} to benchmark...")
model = models_dict[model_name]
return [model, model_name]
print(f"Model ({model_name}) did not match any given above. Try again...")
exit()
def get_ImageNet(transform):
#dataset = datasets.ImageNet(root='data/ImageNet/', download=True)
#test_dataset = datasets.ImageNet(root='data/ImageNet', train=False, transform=transform)
cwd = os.getcwd()
print(cwd)
test_dir = cwd + "/data"
print(test_dir)
print("Checking if files need to be renamed...")
for root, subdirs, files in os.walk(test_dir):
for file in files:
if os.path.splitext(file)[1] in ( '.JPEG', ".JPG"):
og = os.path.join(root, file)
print(og)
newname = file.replace(".JPEG", ".jpeg")
newfile = os.path.join(root, newname)
print(newfile)
os.rename(og, newfile)
test = datasets.ImageFolder(test_dir, transform)
return test
return [dataset, test_dataset]
if __name__ == "__main__":
[device, device_name] = select_device()
cpu_name = printCPUInfo()
if device_name == None:
device_name = cpu_name
cpu = torch.device('cpu')
print(f"Computing with: {str(device_name)}")
torch.backends.cudnn.benchmark = True
BATCH_SIZE = 1
SHUFFLE = True
NUM_WORKERS = 1
crop_size = 224
download = True # flag to download pretrained weights
transform = transforms.Compose([
transforms.RandomResizedCrop(crop_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean = [ 0.485, 0.456, 0.406 ],
std = [ 0.229, 0.224, 0.225 ]),
])
"""
Use the transforms on the images just to replicate findings reported on pytorch website.
All models trained on Imagenet (3, 224, 224). This will be their default input shapes.
EXCEPT for inception_v3 as noted above. Will need to be reshaped.
"""
models_dict = import_models(download)
[model, model_name] = select_model(models_dict)
logger_name = "logs/" + model_name + '_' + device_name +'.log'
logging.basicConfig(filename=logger_name,filemode='w', format='%(message)s')
logging.warning("Beginning Log:...\n")
to_device(model, device, True)
# send back to cpu host
#to_device(model, cpu, True)
test_dataset = get_ImageNet(transform)
test_loader = DataLoader(test_dataset,
batch_size = BATCH_SIZE, shuffle = SHUFFLE, num_workers = NUM_WORKERS)
test_loader = DeviceDataLoader(test_loader, device)
model.eval()
counter = 0
times = []
iterations = 1
for i in range(iterations):
for xb, yb in test_loader:
counter += 1
print(f"Test #{counter}")
if counter != 1:
start_time = time.perf_counter()
out = model(xb)
times.append((time.perf_counter() - start_time))
elif counter == 1:
out = model(xb)
#summary(model, input_size = (3, 224, 224))
profile_input = torch.randn(1, 3, 224, 224)
to_device(profile_input, cpu, True)
to_device(model, cpu, True)
flops, params = profile(model, inputs =(profile_input,))
print(f"\n\n# of FLOPs: {flops}\n# of Params: {params}")
logging.warning(f"Model is: {model_name}")
logging.warning(f"# of FLOPs: {flops}\n# of Params: {params}\n")
inf_mean = statistics.mean(times)*1000 # convert to ms
inf_stdev = statistics.stdev(times)*1000 # convert to ms
print(f"MEAN IS: {(inf_mean)} ms\n")
print(f"STDEV IS: {(inf_stdev)} ms\n\n\n")
logging.warning(f"MEAN IS: {(inf_mean)} ms\n")
logging.warning(f"STDEV IS: {(inf_stdev)} ms\n\n\n")
onnx_model_name = "onnx/" + model_name + ".onnx"
if not os.path.exists(onnx_model_name):
print(f"Saving Model to onnx format... {onnx_model_name}\n")
logging.warning(f"Saving Model to onnx format... {onnx_model_name}\n")
torch.onnx.export(model, profile_input, onnx_model_name, verbose = False, export_params = True, opset_version=11
, input_names = ['input'], output_names = ['output'])
print(f"successfully Saved!\n")
logging.warning(f"Successfully Saved!\n")
#check parameter counting
parameters = 0
for p in model.parameters():
parameters += int(p.numel())
if parameters != params:
print("There was an issue with counting the # of parameters...")
logging.warning("There was an issue with counting the # of parameters...")