diff --git a/machine_learning_hep/data/data_run3/database_ml_parameters_LcToPKPi_newformat.yml b/machine_learning_hep/data/data_run3/database_ml_parameters_LcToPKPi_newformat.yml index a5a0bbacf8..4906fcbb1e 100644 --- a/machine_learning_hep/data/data_run3/database_ml_parameters_LcToPKPi_newformat.yml +++ b/machine_learning_hep/data/data_run3/database_ml_parameters_LcToPKPi_newformat.yml @@ -275,8 +275,8 @@ LcpKpi: prefix_dir: /data2/MLhep/ unmerged_tree_dir: [sim/train_159856/alice/cern.ch/user/a/alihyperloop/jobs/0029, sim/train_159854/alice/cern.ch/user/a/alihyperloop/jobs/0029] #list of periods - pkl: [LHC22pp_mc_Jochen/prod_LHC22b1b/pklmc, - LHC22pp_mc_Jochen/prod_LHC22b1a/pklmc] #list of periods + pkl: [LHC22pp_mc/prod_LHC22b1b/pklmc, + LHC22pp_mc/prod_LHC22b1a/pklmc] #list of periods pkl_skimmed: [LHC22pp_mc/prod_LHC22b1b/pklskmc, LHC22pp_mc/prod_LHC22b1a/pklskmc] #list of periods pkl_skimmed_merge_for_ml: [LHC22pp_mc/prod_LHC22b1b/pklskmlmc, @@ -382,7 +382,7 @@ LcpKpi: sel_an_binmin: [1,2,4,6,8,12] sel_an_binmax: [2,4,6,8,12,24] binning_matching: [0,1,2,3,4,5] - presel_gen_eff: "abs(fY) < 0.8" + presel_gen_eff: "abs(fY) < 0.5" evtsel: null triggersel: data: null diff --git a/machine_learning_hep/optimiser.py b/machine_learning_hep/optimiser.py index 656678d4b4..6e85933dca 100644 --- a/machine_learning_hep/optimiser.py +++ b/machine_learning_hep/optimiser.py @@ -288,7 +288,7 @@ def preparesample(self): # pylint: disable=too-many-branches for ind, (label, nclass) in enumerate(zip(self.p_class_labels, self.p_nclasses)): self.dfs_input[label] = shuffle(self.dfs_input[label], random_state=self.rnd_shuffle) - if label == "bkg": + if label == "bkg" and self.p_equalise_sig_bkg: nclass = nclass*self.p_multbkg self.dfs_input[label] = self.dfs_input[label][:nclass] self.dfs_input[label][self.v_class] = ind