-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathgithub_prequential_multi_test.py
73 lines (65 loc) · 4.16 KB
/
github_prequential_multi_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
"""
The Tornado Framework
By Ali Pesaranghader
University of Ottawa, Ontario, Canada
E-mail: apesaran -at- uottawa -dot- ca / alipsgh -at- gmail -dot- com
"""
from data_structures.attribute_scheme import AttributeScheme
from classifier.__init__ import *
from drift_detection.__init__ import *
from filters.project_creator import Project
from graphic.hex_colors import Color
from streams.readers.arff_reader import ARFFReader
from tasks.prequential_learner_detector_pairs import PrequentialMultiPairs
# 1. Creating a project
project = Project("projects/multi", "sine1")
# 2. Loading an arff file
labels, attributes, stream_records = ARFFReader.read("data_streams/sine1_w_50_n_0.1/sine1_w_50_n_0.1_101.arff")
attributes_scheme = AttributeScheme.get_scheme(attributes)
# 3. Initializing a Classifier-Detector Pairs
pairs = [[NaiveBayes(labels, attributes_scheme['nominal']), FHDDM()],
[NaiveBayes(labels, attributes_scheme['nominal']), FHDDMS()],
[NaiveBayes(labels, attributes_scheme['nominal']), CUSUM()],
[NaiveBayes(labels, attributes_scheme['nominal']), PH()],
[NaiveBayes(labels, attributes_scheme['nominal']), DDM()],
[NaiveBayes(labels, attributes_scheme['nominal']), EDDM()],
[NaiveBayes(labels, attributes_scheme['nominal']), ADWINChangeDetector()],
[NaiveBayes(labels, attributes_scheme['nominal']), SeqDrift2ChangeDetector()],
[NaiveBayes(labels, attributes_scheme['nominal']), HDDM_A_test()],
[NaiveBayes(labels, attributes_scheme['nominal']), HDDM_W_test()],
[Perceptron(labels, attributes_scheme['numeric']), FHDDM()],
[Perceptron(labels, attributes_scheme['numeric']), FHDDMS()],
[Perceptron(labels, attributes_scheme['numeric']), CUSUM()],
[Perceptron(labels, attributes_scheme['numeric']), PH()],
[Perceptron(labels, attributes_scheme['numeric']), DDM()],
[Perceptron(labels, attributes_scheme['numeric']), EDDM()],
[Perceptron(labels, attributes_scheme['numeric']), ADWINChangeDetector()],
[Perceptron(labels, attributes_scheme['numeric']), SeqDrift2ChangeDetector()],
[Perceptron(labels, attributes_scheme['numeric']), HDDM_A_test()],
[Perceptron(labels, attributes_scheme['numeric']), HDDM_W_test()],
[HoeffdingTree(labels, attributes_scheme['nominal']), FHDDM()],
[HoeffdingTree(labels, attributes_scheme['nominal']), FHDDMS()],
[HoeffdingTree(labels, attributes_scheme['nominal']), CUSUM()],
[HoeffdingTree(labels, attributes_scheme['nominal']), PH()],
[HoeffdingTree(labels, attributes_scheme['nominal']), DDM()],
[HoeffdingTree(labels, attributes_scheme['nominal']), EDDM()],
[HoeffdingTree(labels, attributes_scheme['nominal']), ADWINChangeDetector()],
[HoeffdingTree(labels, attributes_scheme['nominal']), SeqDrift2ChangeDetector()],
[HoeffdingTree(labels, attributes_scheme['nominal']), HDDM_A_test()],
[HoeffdingTree(labels, attributes_scheme['nominal']), HDDM_W_test()]]
# 4. Creating a color set for plotting results
colors = [Color.Indigo[1], Color.Blue[1], Color.Green[1], Color.Lime[1], Color.Yellow[1],
Color.Amber[1], Color.Orange[1], Color.Red[1], Color.Purple[1], Color.Pink[1],
Color.Indigo[2], Color.Blue[2], Color.Green[2], Color.Lime[2], Color.Yellow[2],
Color.Amber[2], Color.Orange[2], Color.Red[2], Color.Purple[2], Color.Pink[2],
Color.Indigo[3], Color.Blue[3], Color.Green[3], Color.Lime[3], Color.Yellow[3],
Color.Amber[3], Color.Orange[3], Color.Red[3], Color.Purple[3], Color.Pink[3]]
# 5. Defining actual locations of drifts, acceptance delay interval, and vector of weights
actual_drift_points = [20000, 40000, 60000, 80000]
drift_acceptance_interval = 250
w_vec = [1, 1, 1, 1, 1, 1]
# 6. Creating a Prequential Evaluation Process
prequential = PrequentialMultiPairs(pairs, attributes, attributes_scheme,
actual_drift_points, drift_acceptance_interval,
w_vec, project, color_set=colors, legend_param=False)
prequential.run(stream_records, 1)