forked from mpp-hep/DarkFlow
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_utils.py
48 lines (28 loc) · 1.24 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
########################## Redundant File ##########################
# import torch
# import torch.nn as nn
# from torch.utils.data import DataLoader
# import torchvision.transforms as transforms
# import torchvision.datasets
# from darkflow.utils.network_utils import compute_loss
# # Train
# def train_net(model, x_train, wt_train, optimizer, batch_size):
# input_train = x_train[:, :, :, :].cuda()
# wt_train = wt_train[:].cuda()
# model.train()
# x_decoded, z_mu, z_var, log_det_j, z0, zk = model(input_train)
# tr_loss, tr_kl, tr_eucl = compute_loss(input_train, wt_train, x_decoded, z_mu, z_var, batch_size=batch_size)
# # Backprop and perform Adam optimisation
# optimizer.zero_grad()
# tr_loss.backward()
# optimizer.step()
# return tr_loss, tr_kl, tr_eucl
# # Test/Validate
# def test_net(model, x_test, wt_test, batch_size):
# model.eval()
# with torch.no_grad():
# input_test = x_test[:, :, :, :].cuda()
# wt_test = wt_test[:].cuda()
# x_decoded, z_mu, z_var, log_det_j, z0, zk = model(input_test)
# te_loss, te_kl, te_eucl = compute_loss(input_test, wt_test, x_decoded, z_mu, z_var, batch_size=batch_size)
# return te_loss, te_kl, te_eucl