-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoder_analysis.py
86 lines (68 loc) · 2.94 KB
/
encoder_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from nets.pipsUS_v5 import PipsUS
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
def translate_image(img, dx, dy):
aug_mat = np.zeros((2, 3))
aug_mat[0, 0] = 1
aug_mat[1, 1] = 1
aug_mat[0, 2] = dx
aug_mat[1, 2] = dy
h, w, c = img.shape
aug_img = cv2.warpAffine(img, aug_mat, (w, h), flags=cv2.INTER_LINEAR)
return aug_img
if __name__ == '__main__':
with torch.no_grad():
# load model
model = PipsUS(stride=8, history_seq_len=8)
model.init_realtime_delta()
# todo: load checkpoint
checkpoint_path = 'checkpoints/pipsUSv5_i6_S8_size256_256_kpsift_lr5e-5_A_Feb11_finetune_zero_flow/best_val-000000010.pth'
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint['model_state_dict'], strict=False)
# generate fake data
img = np.zeros((256, 256, 3), dtype=np.uint8)
# draw a circle
cv2.circle(img, (128, 128), 5, (255, 255, 255), -1)
# plt.figure()
# plt.imshow(img)
# plt.show()
#
center_img = img.astype(np.float32)
center_img = torch.from_numpy(center_img)
center_img = 2 * (center_img / 255.0) - 1.0
center_img = np.transpose(center_img, (2, 0, 1)).unsqueeze(0)
feature = model.fnet(center_img)[0]
print(feature.shape)
# translate img
aug_feats = []
for trans_x in [20, 40, 60, 80, 100, 120]:
aug_img = translate_image(img, trans_x, 0)
aug_img = aug_img.astype(np.float32)
aug_img = torch.from_numpy(aug_img)
aug_img = 2 * (aug_img / 255.0) - 1.0
aug_img = np.transpose(aug_img, (2, 0, 1)).unsqueeze(0)
feature_aug = model.fnet(aug_img)[0]
aug_feats.append(feature_aug)
num_plots = len(aug_feats) + 1
fig, axes = plt.subplots(4, num_plots)
# axes[0, 0].imshow(feature[0].cpu().numpy())
# axes[1, 0].imshow(feature[64].cpu().numpy())
# axes[2, 0].imshow(feature[64+96].cpu().numpy())
# axes[3, 0].imshow(feature[64+96+128].cpu().numpy())
# for i in range(len(aug_feats)):
# axes[0, i+1].imshow(aug_feats[i][0].cpu().numpy())
# axes[1, i+1].imshow(aug_feats[i][64].cpu().numpy())
# axes[2, i+1].imshow(aug_feats[i][64+96].cpu().numpy())
# axes[3, i+1].imshow(aug_feats[i][64+96+128].cpu().numpy())
axes[0, 0].imshow(feature[0].cpu().numpy())
axes[1, 0].imshow(feature[63].cpu().numpy())
axes[2, 0].imshow(feature[95].cpu().numpy())
axes[3, 0].imshow(feature[127].cpu().numpy())
for i in range(len(aug_feats)):
axes[0, i+1].imshow(aug_feats[i][0].cpu().numpy())
axes[1, i+1].imshow(aug_feats[i][63].cpu().numpy())
axes[2, i+1].imshow(aug_feats[i][95].cpu().numpy())
axes[3, i+1].imshow(aug_feats[i][127].cpu().numpy())
plt.show()