-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRandom Forest demo Model(Ali).csv(randomforest model)
1496 lines (1496 loc) · 186 KB
/
Random Forest demo Model(Ali).csv(randomforest model)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "eef80b20",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import seaborn as sns\n",
"from matplotlib import pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "a9891fb9",
"metadata": {},
"outputs": [],
"source": [
"bank=pd.read_csv('bank-full.csv')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "0819b721",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>age</th>\n",
" <th>job</th>\n",
" <th>marital</th>\n",
" <th>education</th>\n",
" <th>default</th>\n",
" <th>balance</th>\n",
" <th>housing</th>\n",
" <th>loan</th>\n",
" <th>contact</th>\n",
" <th>day</th>\n",
" <th>month</th>\n",
" <th>duration</th>\n",
" <th>campaign</th>\n",
" <th>pdays</th>\n",
" <th>previous</th>\n",
" <th>poutcome</th>\n",
" <th>Target</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>58</td>\n",
" <td>management</td>\n",
" <td>married</td>\n",
" <td>tertiary</td>\n",
" <td>no</td>\n",
" <td>2143</td>\n",
" <td>yes</td>\n",
" <td>no</td>\n",
" <td>unknown</td>\n",
" <td>5</td>\n",
" <td>may</td>\n",
" <td>261</td>\n",
" <td>1</td>\n",
" <td>-1</td>\n",
" <td>0</td>\n",
" <td>unknown</td>\n",
" <td>no</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>44</td>\n",
" <td>technician</td>\n",
" <td>single</td>\n",
" <td>secondary</td>\n",
" <td>no</td>\n",
" <td>29</td>\n",
" <td>yes</td>\n",
" <td>no</td>\n",
" <td>unknown</td>\n",
" <td>5</td>\n",
" <td>may</td>\n",
" <td>151</td>\n",
" <td>1</td>\n",
" <td>-1</td>\n",
" <td>0</td>\n",
" <td>unknown</td>\n",
" <td>no</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>33</td>\n",
" <td>entrepreneur</td>\n",
" <td>married</td>\n",
" <td>secondary</td>\n",
" <td>no</td>\n",
" <td>2</td>\n",
" <td>yes</td>\n",
" <td>yes</td>\n",
" <td>unknown</td>\n",
" <td>5</td>\n",
" <td>may</td>\n",
" <td>76</td>\n",
" <td>1</td>\n",
" <td>-1</td>\n",
" <td>0</td>\n",
" <td>unknown</td>\n",
" <td>no</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>47</td>\n",
" <td>blue-collar</td>\n",
" <td>married</td>\n",
" <td>unknown</td>\n",
" <td>no</td>\n",
" <td>1506</td>\n",
" <td>yes</td>\n",
" <td>no</td>\n",
" <td>unknown</td>\n",
" <td>5</td>\n",
" <td>may</td>\n",
" <td>92</td>\n",
" <td>1</td>\n",
" <td>-1</td>\n",
" <td>0</td>\n",
" <td>unknown</td>\n",
" <td>no</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>33</td>\n",
" <td>unknown</td>\n",
" <td>single</td>\n",
" <td>unknown</td>\n",
" <td>no</td>\n",
" <td>1</td>\n",
" <td>no</td>\n",
" <td>no</td>\n",
" <td>unknown</td>\n",
" <td>5</td>\n",
" <td>may</td>\n",
" <td>198</td>\n",
" <td>1</td>\n",
" <td>-1</td>\n",
" <td>0</td>\n",
" <td>unknown</td>\n",
" <td>no</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" age job marital education default balance housing loan \\\n",
"0 58 management married tertiary no 2143 yes no \n",
"1 44 technician single secondary no 29 yes no \n",
"2 33 entrepreneur married secondary no 2 yes yes \n",
"3 47 blue-collar married unknown no 1506 yes no \n",
"4 33 unknown single unknown no 1 no no \n",
"\n",
" contact day month duration campaign pdays previous poutcome Target \n",
"0 unknown 5 may 261 1 -1 0 unknown no \n",
"1 unknown 5 may 151 1 -1 0 unknown no \n",
"2 unknown 5 may 76 1 -1 0 unknown no \n",
"3 unknown 5 may 92 1 -1 0 unknown no \n",
"4 unknown 5 may 198 1 -1 0 unknown no "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bank.head()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "42846a67",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(45211, 17)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bank.shape"
]
},
{
"cell_type": "code",
"execution_count": 82,
"id": "d787f7cf",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6hUlEQVR4nO3de3QV9b3//9c2V8CwIcRctm4gKMFLIiBoCNoCooEocBRPUbEpVATbIhgDR4u2Em1rrK1iDxxQKQUh4eDqKnipNhhAoxQJGM5WQH4IAho0IRZyIUh2QjK/P/wyZecCISTZl3k+1pq1Mp/PZ8/+vMGGV2c+M2MzDMMQAACAhV3k7QkAAAB4G4EIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYXrC3J+AvGhoa9M033ygiIkI2m83b0wEAAK1gGIaOHz8uh8Ohiy5q+TwQgaiVvvnmGzmdTm9PAwAAtEFxcbEuu+yyFvsJRK0UEREh6fs/0O7du3t5NgAAoDWqqqrkdDrNf8dbQiBqpdOXybp3704gAgDAz5xruQuLqgEAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOUFe3sCQFvV1NSosLCwSXtycrLCw8O9MCMAgL8iEMFvFRYW6pHF69TDmWC2VRR/rgWSRowY4b2JAQD8DoEIfq2HM0HRCYO9PQ0AgJ9jDREAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8rwai7OxsXX/99YqIiFB0dLTuuOMO7d2712OMYRjKysqSw+FQly5dNHLkSO3evdtjjNvt1qxZsxQVFaVu3bppwoQJOnz4sMeY8vJypaeny263y263Kz09XRUVFR1dIgAA8ANeDUQFBQWaOXOmtm7dqvz8fJ06dUqpqak6ceKEOea5557TCy+8oEWLFmn79u2KjY3VrbfequPHj5tjMjIytG7dOq1Zs0abN29WdXW1xo0bp/r6enPM5MmT5XK5lJeXp7y8PLlcLqWnp3dqvQAAwDd59dUdeXl5HvvLly9XdHS0ioqK9MMf/lCGYejFF1/UE088oYkTJ0qSXn31VcXExGj16tV68MEHVVlZqWXLlmnVqlW65ZZbJEk5OTlyOp3asGGDxowZoz179igvL09bt25VcnKyJGnp0qVKSUnR3r17NWDAgM4tHAAA+BSfWkNUWVkpSYqMjJQkHTx4UKWlpUpNTTXHhIWFacSIEdqyZYskqaioSHV1dR5jHA6HEhMTzTEfffSR7Ha7GYYkadiwYbLb7eaYxtxut6qqqjw2AAAQmHzm5a6GYSgzM1M33XSTEhMTJUmlpaWSpJiYGI+xMTEx+vLLL80xoaGh6tmzZ5Mxpz9fWlqq6OjoJt8ZHR1tjmksOztbTz311IUVhXZTU1OjwsJCjzaXyyWjIchLMwIABBKfCUQPPfSQPv30U23evLlJn81m89g3DKNJW2ONxzQ3/mzHmTdvnjIzM839qqoqOZ3Os34nOk5hYaEeWbxOPZwJZltx0YfqOeAGL84KABAofCIQzZo1S2+++aY++OADXXbZZWZ7bGyspO/P8MTFxZntZWVl5lmj2NhY1dbWqry83OMsUVlZmYYPH26OOXLkSJPv/fbbb5ucfTotLCxMYWFhF14c2k0PZ4KiEwab++XF+7w4GwBAIPHqGiLDMPTQQw9p7dq12rRpk+Lj4z364+PjFRsbq/z8fLOttrZWBQUFZtgZMmSIQkJCPMaUlJRo165d5piUlBRVVlZq27Zt5pjCwkJVVlaaYwAAgHV59QzRzJkztXr1ar3xxhuKiIgw1/PY7XZ16dJFNptNGRkZeuaZZ9S/f3/1799fzzzzjLp27arJkyebY6dNm6Y5c+aoV69eioyM1Ny5c5WUlGTedXbVVVdp7Nixmj59ul5++WVJ0owZMzRu3DjuMAsw9afq5HK5mrQnJycrPDy88ycEAPALXg1ES5YskSSNHDnSo3358uWaOnWqJOnRRx/VyZMn9Ytf/ELl5eVKTk7Wu+++q4iICHP8ggULFBwcrEmTJunkyZMaPXq0VqxYoaCgfy+4zc3N1ezZs8270SZMmKBFixZ1bIHodFUlh/TSgZOKKw4x2yqKP9cCSSNGjPDexAAAPs2rgcgwjHOOsdlsysrKUlZWVotjwsPDtXDhQi1cuLDFMZGRkcrJyWnLNOFnIhz9PNYaAQBwLj71HCIAAABvIBABAADLIxABAADLIxABAADL84kHMwKdqbnXgEjcmg8AVkYgguU09xoQbs0HAGsjEMGSGr8GBABgbawhAgAAlkcgAgAAlkcgAgAAlscaIkC8FBYArI5ABIiXwgKA1RGIgP+Hl8ICgHWxhggAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgeL3cFWlB/qk4ul6tJe3JyssLDwzt/QgCADkMgAlpQVXJILx04qbjiELOtovhzLZA0YsQI700MANDuCETAWUQ4+ik6YbC3pwEA6GCsIQIAAJZHIAIAAJZHIAIAAJZHIAIAAJbn1UD0wQcfaPz48XI4HLLZbHr99dc9+m02W7PbH/7wB3PMyJEjm/Tfc889HscpLy9Xenq67Ha77Ha70tPTVVFR0QkVAgAAf+DVu8xOnDihgQMH6qc//anuuuuuJv0lJSUe+//4xz80bdq0JmOnT5+up59+2tzv0qWLR//kyZN1+PBh5eXlSZJmzJih9PR0vfXWW+1VCtpRTU2NCgsLPdpcLpeMhiAvzQgAEOi8GojS0tKUlpbWYn9sbKzH/htvvKFRo0apX79+Hu1du3ZtMva0PXv2KC8vT1u3blVycrIkaenSpUpJSdHevXs1YMCAZj/ndrvldrvN/aqqqlbVhAtXWFioRxavUw9ngtlWXPSheg64wYuzAgAEMr9ZQ3TkyBG9/fbbmjZtWpO+3NxcRUVF6ZprrtHcuXN1/Phxs++jjz6S3W43w5AkDRs2THa7XVu2bGnx+7Kzs81LbHa7XU6ns30Lwln1cCYoOmGwuV0czZ8/AKDj+M2DGV999VVFRERo4sSJHu333Xef4uPjFRsbq127dmnevHn65JNPlJ+fL0kqLS1VdHR0k+NFR0ertLS0xe+bN2+eMjMzzf2qqipCEQAAAcpvAtFf/vIX3XfffU3eITV9+nTz58TERPXv319Dhw7Vjh07dN1110n6fnF2Y4ZhNNt+WlhYmMLCwtpp9gAAwJf5xSWzDz/8UHv37tUDDzxwzrHXXXedQkJCtG/fPknfr0M6cuRIk3HffvutYmJi2n2uAADA//hFIFq2bJmGDBmigQMHnnPs7t27VVdXp7i4OElSSkqKKisrtW3bNnNMYWGhKisrNXz48A6bMwAA8B9evWRWXV2t/fv3m/sHDx6Uy+VSZGSkevfuLen7tTt//etf9fzzzzf5/BdffKHc3FzddtttioqK0meffaY5c+Zo8ODBuvHGGyVJV111lcaOHavp06fr5ZdflvT9bffjxo1r8Q4zAABgLV49Q/Txxx9r8ODBGjz4+7eJZ2ZmavDgwXryySfNMWvWrJFhGLr33nubfD40NFQbN27UmDFjNGDAAM2ePVupqanasGGDgoL+/cya3NxcJSUlKTU1Vampqbr22mu1atWqji8QAAD4Ba+eIRo5cqQMwzjrmBkzZmjGjBnN9jmdThUUFJzzeyIjI5WTk9OmOQIAgMDnN3eZAb6g/lSdXC5Xk/bk5OQmd0ACAPwHgQg4D1Ulh/TSgZOKKw4x2yqKP9cCSSNGjPDexAAAF4RABJynCEc/RScM9vY0AADtyC9uuwcAAOhIBCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5Xg1EH3zwgcaPHy+HwyGbzabXX3/do3/q1Kmy2Wwe27BhwzzGuN1uzZo1S1FRUerWrZsmTJigw4cPe4wpLy9Xenq67Ha77Ha70tPTVVFR0cHVAQAAf+HVQHTixAkNHDhQixYtanHM2LFjVVJSYm7vvPOOR39GRobWrVunNWvWaPPmzaqurta4ceNUX19vjpk8ebJcLpfy8vKUl5cnl8ul9PT0DqsLAAD4l2BvfnlaWprS0tLOOiYsLEyxsbHN9lVWVmrZsmVatWqVbrnlFklSTk6OnE6nNmzYoDFjxmjPnj3Ky8vT1q1blZycLElaunSpUlJStHfvXg0YMKDZY7vdbrndbnO/qqqqLSUCAAA/4PNriN5//31FR0crISFB06dPV1lZmdlXVFSkuro6paammm0Oh0OJiYnasmWLJOmjjz6S3W43w5AkDRs2THa73RzTnOzsbPMSm91ul9Pp7IDqAACAL/DpQJSWlqbc3Fxt2rRJzz//vLZv366bb77ZPHNTWlqq0NBQ9ezZ0+NzMTExKi0tNcdER0c3OXZ0dLQ5pjnz5s1TZWWluRUXF7djZQAAwJd49ZLZudx9993mz4mJiRo6dKj69Omjt99+WxMnTmzxc4ZhyGazmftn/tzSmMbCwsIUFhbWxpkDTdXU1KiwsLBJe3JyssLDw70wIwDAaT4diBqLi4tTnz59tG/fPklSbGysamtrVV5e7nGWqKysTMOHDzfHHDlypMmxvv32W8XExHTOxAFJhYWFemTxOvVwJphtFcWfa4GkESNGeG9iAADfvmTW2NGjR1VcXKy4uDhJ0pAhQxQSEqL8/HxzTElJiXbt2mUGopSUFFVWVmrbtm3mmMLCQlVWVppjgM7Sw5mg6ITB5nZmOAIAeI9XzxBVV1dr//795v7BgwflcrkUGRmpyMhIZWVl6a677lJcXJwOHTqkxx9/XFFRUbrzzjslSXa7XdOmTdOcOXPUq1cvRUZGau7cuUpKSjLvOrvqqqs0duxYTZ8+XS+//LIkacaMGRo3blyLd5gB56P+VJ1cLleTdi6FAYD/8Gog+vjjjzVq1ChzPzMzU5I0ZcoULVmyRDt37tTKlStVUVGhuLg4jRo1Sq+99poiIiLMzyxYsEDBwcGaNGmSTp48qdGjR2vFihUKCgoyx+Tm5mr27Nnm3WgTJkw467OPgPNRVXJILx04qbjiELONS2EA4F+8GohGjhwpwzBa7F+/fv05jxEeHq6FCxdq4cKFLY6JjIxUTk5Om+YItEaEo5+iEwZ7exoAgDbyqzVEAAAAHYFABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALC/Y2xMArKz+VJ1cLleT9uTkZIWHh3f+hADAoghEgBdVlRzSSwdOKq44xGyrKP5cCySNGDHCexMDAIshEAFeFuHop+iEwd6eBgBYGmuIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5fFgRsDH8DoPAOh8BCLAx/A6DwDofAQiwAfxOg8A6FysIQIAAJbn1UD0wQcfaPz48XI4HLLZbHr99dfNvrq6Oj322GNKSkpSt27d5HA49JOf/ETffPONxzFGjhwpm83msd1zzz0eY8rLy5Weni673S673a709HRVVFR0QoUAAMAfeDUQnThxQgMHDtSiRYua9H333XfasWOHfv3rX2vHjh1au3atPv/8c02YMKHJ2OnTp6ukpMTcXn75ZY/+yZMny+VyKS8vT3l5eXK5XEpPT++wugAAgH/x6hqitLQ0paWlNdtnt9uVn5/v0bZw4ULdcMMN+uqrr9S7d2+zvWvXroqNjW32OHv27FFeXp62bt2q5ORkSdLSpUuVkpKivXv3asCAAe1UDQAA8Fd+tYaosrJSNptNPXr08GjPzc1VVFSUrrnmGs2dO1fHjx83+z766CPZ7XYzDEnSsGHDZLfbtWXLlha/y+12q6qqymMDAACByW/uMqupqdEvf/lLTZ48Wd27dzfb77vvPsXHxys2Nla7du3SvHnz9Mknn5hnl0pLSxUdHd3keNHR0SotLW3x+7Kzs/XUU0+1fyFAGzT3bCKeSwQA7ccvAlFdXZ3uueceNTQ0aPHixR5906dPN39OTExU//79NXToUO3YsUPXXXedJMlmszU5pmEYzbafNm/ePGVmZpr7VVVVcjqdF1oK0CaNn03Ec4kAoH35fCCqq6vTpEmTdPDgQW3atMnj7FBzrrvuOoWEhGjfvn267rrrFBsbqyNHjjQZ9+233yomJqbF44SFhSksLOyC5w+0F55NBAAdx6fXEJ0OQ/v27dOGDRvUq1evc35m9+7dqqurU1xcnCQpJSVFlZWV2rZtmzmmsLBQlZWVGj58eIfNHQAA+A+vniGqrq7W/v37zf2DBw/K5XIpMjJSDodD//mf/6kdO3bo73//u+rr6801P5GRkQoNDdUXX3yh3Nxc3XbbbYqKitJnn32mOXPmaPDgwbrxxhslSVdddZXGjh2r6dOnm7fjz5gxQ+PGjeMOM1hSTU2NCgsLm7SzJgmAlXk1EH388ccaNWqUuX96zc6UKVOUlZWlN998U5I0aNAgj8+99957GjlypEJDQ7Vx40b96U9/UnV1tZxOp26//XbNnz9fQUFB5vjc3FzNnj1bqampkqQJEyY0++wjwAoKCwv1yOJ16uFMMNtYkwTA6rwaiEaOHCnDMFrsP1ufJDmdThUUFJzzeyIjI5WTk3Pe8wMCVQ9nAuuRAOAMPr2GCAAAoDO0KRD169dPR48ebdJeUVGhfv36XfCkAAAAOlObAtGhQ4dUX1/fpN3tduvrr7++4EkBAAB0pvNaQ3R6kbMkrV+/Xna73dyvr6/Xxo0b1bdv33abHAJfc3c8uVwuGQ1BLXwCAID2d16B6I477pD0/ZOfp0yZ4tEXEhKivn376vnnn2+3ySHwNXfHU3HRh+o54AYvzsp6mns1iMSt+ACs47wCUUNDgyQpPj5e27dvV1RUVIdMCtbS+I6n8uJ9XpyNNTV+NYjErfgArKVNt90fPHiwvecBwMt4NQgAK2vzc4g2btyojRs3qqyszDxzdNpf/vKXC54YgJZxiQsA2lebAtFTTz2lp59+WkOHDlVcXNxZ3xoPoP1xiQsA2lebAtFLL72kFStWKD09vb3nA6CVuMQFAO2nTc8hqq2t5U3xAAAgYLTpDNEDDzyg1atX69e//nV7zwdAO+I5TwDQOm0KRDU1NXrllVe0YcMGXXvttQoJCfHof+GFF9plcgAuDM95AoDWaVMg+vTTTzVo0CBJ0q5duzz6WGAN+Bae8wQA59amQPTee++19zwAAAC8pk2LqgEAAAJJm84QjRo16qyXxjZt2tTmCQEAAHS2NgWi0+uHTqur+/6pubt27Wry0lcAAABf16ZAtGDBgmbbs7KyVF1dfUETAgAA6GxtfpdZc3784x/rhhtu0B//+Mf2PCwAL+B9aQCspF0D0UcffcQvSiBA8L40AFbSpkA0ceJEj33DMFRSUqKPP/6Yp1cDAYT3pQGwijYFIrvd7rF/0UUXacCAAXr66aeVmpraLhMDAADoLG0KRMuXL2/veQAAAHjNBa0hKioq0p49e2Sz2XT11Vdr8GBOrQMAAP/TpkBUVlame+65R++//7569OghwzBUWVmpUaNGac2aNbrkkkvae54AAAAdpk2v7pg1a5aqqqq0e/duHTt2TOXl5dq1a5eqqqo0e/bs9p4jAABAh2rTGaK8vDxt2LBBV111ldl29dVX63/+539YVA1JUk1NjQoLC5u08wwbAIAvalMgamhoUEhISJP2kJAQNTQ0XPCk4P8KCwv1yOJ16uFMMNt4hg0AwFe1KRDdfPPNevjhh/W///u/cjgckqSvv/5ajzzyiEaPHt2uE4T/6uFM4Bk2AAC/0KY1RIsWLdLx48fVt29fXX755briiisUHx+v48ePa+HChe09RwAAgA7VpkDkdDq1Y8cOvf3228rIyNDs2bP1zjvvqKioSJdddlmrj/PBBx9o/Pjxcjgcstlsev311z36DcNQVlaWHA6HunTpopEjR2r37t0eY9xut2bNmqWoqCh169ZNEyZM0OHDhz3GlJeXKz09XXa7XXa7Xenp6aqoqGhL6QAAIACdVyDatGmTrr76alVVVUmSbr31Vs2aNUuzZ8/W9ddfr2uuuUYffvhhq4934sQJDRw4UIsWLWq2/7nnntMLL7ygRYsWafv27YqNjdWtt96q48ePm2MyMjK0bt06rVmzRps3b1Z1dbXGjRun+vp6c8zkyZPlcrmUl5envLw8uVwupaenn0/pAAAggJ3XGqIXX3xR06dPV/fu3Zv02e12Pfjgg3rhhRf0gx/8oFXHS0tLU1paWrN9hmHoxRdf1BNPPGG+O+3VV19VTEyMVq9erQcffFCVlZVatmyZVq1apVtuuUWSlJOTI6fTqQ0bNmjMmDHas2eP8vLytHXrViUnJ0uSli5dqpSUFO3du1cDBgw4nz8CAAAQgM7rDNEnn3yisWPHttifmpqqoqKiC56UJB08eFClpaUet/GHhYVpxIgR2rJli6Tvn5RdV1fnMcbhcCgxMdEc89FHH8lut5thSJKGDRsmu91ujmmO2+1WVVWVxwZYXf2pOrlcLhUUFHhsNTU13p4aAFyQ8zpDdOTIkWZvtzcPFhysb7/99oInJUmlpaWSpJiYGI/2mJgYffnll+aY0NBQ9ezZs8mY058vLS1VdHR0k+NHR0ebY5qTnZ2tp5566oJqAAJNVckhvXTgpOKK//17oLnHKfAcKgD+5rwC0aWXXqqdO3fqiiuuaLb/008/VVxcXLtM7DSbzeaxbxhGk7bGGo9pbvy5jjNv3jxlZmaa+1VVVXI6na2dNhCwIhz9zvk4BZ5DBcDfnNcls9tuu01PPvlks6fHT548qfnz52vcuHHtMrHY2FhJanIWp6yszDxrFBsbq9raWpWXl591zJEjR5oc/9tvv21y9ulMYWFh6t69u8cGoPVOP4fq9HZmOAIAX3NegehXv/qVjh07poSEBD333HN644039Oabb+r3v/+9BgwYoGPHjumJJ55ol4nFx8crNjZW+fn5Zlttba0KCgo0fPhwSdKQIUMUEhLiMaakpES7du0yx6SkpKiyslLbtm0zxxQWFqqystIcAwAArO28LpnFxMRoy5Yt+vnPf6558+bJMAxJ31+SGjNmjBYvXnzWsy6NVVdXa//+/eb+wYMH5XK5FBkZqd69eysjI0PPPPOM+vfvr/79++uZZ55R165dNXnyZEnf39k2bdo0zZkzR7169VJkZKTmzp2rpKQk866zq666SmPHjtX06dP18ssvS5JmzJihcePGcYcZAACQ1IZXd/Tp00fvvPOOysvLtX//fhmGof79+zdZ2NwaH3/8sUaNGmXun16zM2XKFK1YsUKPPvqoTp48qV/84hcqLy9XcnKy3n33XUVERJifWbBggYKDgzVp0iSdPHlSo0eP1ooVKxQUFGSOyc3N1ezZs8270SZMmNDis48AAID1tOldZpLUs2dPXX/99Rf05SNHjjTPMjXHZrMpKytLWVlZLY4JDw/XwoULz/rKkMjISOXk5FzIVAEAQABr06s7AAAAAgmBCAAAWF6bL5kBwPk4/ZTrM/GgRgC+gkAEoFM0fsr1sUOf6aculwYNGuQxjpAEwBsIRAA6zZlPuS4v3qeXNu4552tAAKAzEIgAeE1rXgMCAJ2BRdUAAMDyOEOEC9bcm81dLpeMhqAWPgE0r7mF1xLrigB0PAIRLlhzbzYvLvpQPQfc4MVZwR81Xngtsa4IQOcgEKFdnH6z+Wnlxfu8OBv4M9YVAfAGAhEAn8ZlNACdgUAEwKdxGQ1AZyAQAfB5XEYD0NG47R4AAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgeD2YEYHk1NTUqLCxs0s7rQQDrIBABsLzCwkI9snidejgTzDZeDwJYC4EIACT1cCbwehDAwghEAAICl70AXAgCEc5Lc//ouFwuGQ1BXpoR8L3mLnsdO/SZfupyadCgQR5jCUkAGiMQ4bw0949OcdGH6jngBi/OCvhe48te5cX79NLGPYorDjHbWBsEoDkEIpy35v7RAXxVhKMfa4MAnBPPIQIAAJbHGSIAllJ/qk4ul8ujjXVwAAhEACylquSQXjpw0mNdEevgAPj8JbO+ffvKZrM12WbOnClJmjp1apO+YcOGeRzD7XZr1qxZioqKUrdu3TRhwgQdPnzYG+UA8AGn1xWd3i6OdrbqczU1NSooKPDYampqOni2ADqDz58h2r59u+rr6839Xbt26dZbb9WPfvQjs23s2LFavny5uR8aGupxjIyMDL311ltas2aNevXqpTlz5mjcuHEqKipSUBCnyQG0TuO7LLljDQgcPh+ILrnkEo/9Z599VpdffrnHL6CwsDDFxsY2+/nKykotW7ZMq1at0i233CJJysnJkdPp1IYNGzRmzJiOmzyAgMMTrYHA5POXzM5UW1urnJwc3X///bLZbGb7+++/r+joaCUkJGj69OkqKysz+4qKilRXV6fU1FSzzeFwKDExUVu2bGnxu9xut6qqqjw2AAAQmPwqEL3++uuqqKjQ1KlTzba0tDTl5uZq06ZNev7557V9+3bdfPPNcrvdkqTS0lKFhoaqZ8+eHseKiYlRaWlpi9+VnZ0tu91ubk5n69YYAAAA/+Pzl8zOtGzZMqWlpcnhcJhtd999t/lzYmKihg4dqj59+ujtt9/WxIkTWzyWYRgeZ5kamzdvnjIzM839qqoqQhFgIdyeD1iL3wSiL7/8Uhs2bNDatWvPOi4uLk59+vTRvn3fPz05NjZWtbW1Ki8v9zhLVFZWpuHDh7d4nLCwMIWFhbXP5AH4HW7PB6zFby6ZLV++XNHR0br99tvPOu7o0aMqLi5WXFycJGnIkCEKCQlRfn6+OaakpES7du06ayACgLbeng/A//jFGaKGhgYtX75cU6ZMUXDwv6dcXV2trKws3XXXXYqLi9OhQ4f0+OOPKyoqSnfeeackyW63a9q0aZozZ4569eqlyMhIzZ07V0lJSeZdZwAAwNr8IhBt2LBBX331le6//36P9qCgIO3cuVMrV65URUWF4uLiNGrUKL322muKiIgwxy1YsEDBwcGaNGmSTp48qdGjR2vFihU8gwgAAEjyk0CUmpoqwzCatHfp0kXr168/5+fDw8O1cOFCLVy4sCOmBwAA/JzfrCECAADoKAQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgecHengAABJKamhoVFhY2aU9OTlZ4eLgXZgSgNQhEANCOCgsL9cjiderhTDDbKoo/1wJJI0aM8N7EAJwVgQgA2lkPZ4KiEwZ7exoAzgNriAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOXxpGqcVeP3MrlcLhkNQV6cEQAA7Y9AhLNq/F6m4qIP1XPADV6eFQAA7cunL5llZWXJZrN5bLGxsWa/YRjKysqSw+FQly5dNHLkSO3evdvjGG63W7NmzVJUVJS6deumCRMm6PDhw51dil87/V6m6ITBujja6e3pAADQ7nw6EEnSNddco5KSEnPbuXOn2ffcc8/phRde0KJFi7R9+3bFxsbq1ltv1fHjx80xGRkZWrdundasWaPNmzerurpa48aNU319vTfKAQAAPsjnL5kFBwd7nBU6zTAMvfjii3riiSc0ceJESdKrr76qmJgYrV69Wg8++KAqKyu1bNkyrVq1SrfccoskKScnR06nUxs2bNCYMWNa/F632y23223uV1VVtXNlAADAV/j8GaJ9+/bJ4XAoPj5e99xzjw4cOCBJOnjwoEpLS5WammqODQsL04gRI7RlyxZJUlFRkerq6jzGOBwOJSYmmmNakp2dLbvdbm5OJ5eKAAAIVD4diJKTk7Vy5UqtX79eS5cuVWlpqYYPH66jR4+qtLRUkhQTE+PxmZiYGLOvtLRUoaGh6tmzZ4tjWjJv3jxVVlaaW3FxcTtWBgAAfIlPXzJLS0szf05KSlJKSoouv/xyvfrqqxo2bJgkyWazeXzGMIwmbY21ZkxYWJjCwsLaOHMAAOBPfPoMUWPdunVTUlKS9u3bZ64ranymp6yszDxrFBsbq9raWpWXl7c4BgAAwK8Ckdvt1p49exQXF6f4+HjFxsYqPz/f7K+trVVBQYGGDx8uSRoyZIhCQkI8xpSUlGjXrl3mGAAAAJ++ZDZ37lyNHz9evXv3VllZmX7729+qqqpKU6ZMkc1mU0ZGhp555hn1799f/fv31zPPPKOuXbtq8uTJkiS73a5p06Zpzpw56tWrlyIjIzV37lwlJSWZd50BAAD4dCA6fPiw7r33Xv3rX//SJZdcomHDhmnr1q3q06ePJOnRRx/VyZMn9Ytf/ELl5eVKTk7Wu+++q4iICPMYCxYsUHBwsCZNmqSTJ09q9OjRWrFihYKCeP0EAAD4nk8HojVr1py132azKSsrS1lZWS2OCQ8P18KFC7Vw4cJ2nh0AAAgUfrWGCAAAoCMQiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOUFe3sC8B01NTUqLCz0aHO5XDIagrw0IwAAOgeBCKbCwkI9snidejgTzLbiog/Vc8ANXpwVAAAdj0AEDz2cCYpOGGzulxfv8+JsAADoHKwhAgAAlkcgAgAAlkcgAgAAlufTgSg7O1vXX3+9IiIiFB0drTvuuEN79+71GDN16lTZbDaPbdiwYR5j3G63Zs2apaioKHXr1k0TJkzQ4cOHO7MUAADgw3w6EBUUFGjmzJnaunWr8vPzderUKaWmpurEiRMe48aOHauSkhJze+eddzz6MzIytG7dOq1Zs0abN29WdXW1xo0bp/r6+s4sBwAA+CifvsssLy/PY3/58uWKjo5WUVGRfvjDH5rtYWFhio2NbfYYlZWVWrZsmVatWqVbbrlFkpSTkyOn06kNGzZozJgxHVcAAADwCz59hqixyspKSVJkZKRH+/vvv6/o6GglJCRo+vTpKisrM/uKiopUV1en1NRUs83hcCgxMVFbtmxp8bvcbreqqqo8NgAAEJj8JhAZhqHMzEzddNNNSkxMNNvT0tKUm5urTZs26fnnn9f27dt18803y+12S5JKS0sVGhqqnj17ehwvJiZGpaWlLX5fdna27Ha7uTmdzo4pDAAAeJ1PXzI700MPPaRPP/1Umzdv9mi/++67zZ8TExM1dOhQ9enTR2+//bYmTpzY4vEMw5DNZmuxf968ecrMzDT3q6qqCEUAAAQovzhDNGvWLL355pt67733dNlll511bFxcnPr06aN9+75/wnJsbKxqa2tVXl7uMa6srEwxMTEtHicsLEzdu3f32AAAQGDy6UBkGIYeeughrV27Vps2bVJ8fPw5P3P06FEVFxcrLi5OkjRkyBCFhIQoPz/fHFNSUqJdu3Zp+PDhHTZ3AADgP3z6ktnMmTO1evVqvfHGG4qIiDDX/NjtdnXp0kXV1dXKysrSXXfdpbi4OB06dEiPP/64oqKidOedd5pjp02bpjlz5qhXr16KjIzU3LlzlZSUZN51BgAArM2nA9GSJUskSSNHjvRoX758uaZOnaqgoCDt3LlTK1euVEVFheLi4jRq1Ci99tprioiIMMcvWLBAwcHBmjRpkk6ePKnRo0drxYoVCgoK6sxyAACAj/LpQGQYxln7u3TpovXr15/zOOHh4Vq4cKEWLlzYXlMDAAABxKcDEdpHTU2NCgsLm7QnJycrPDzcCzMCAMC3EIgsoLCwUI8sXqcezgSzraL4cy2QNGLECO9NDAAAH0EgsogezgRFJwz29jQAAPBJPn3bPQAAQGcgEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMvjtnsA6GD1p+rkcrmatPNwVMB3EIgAoINVlRzSSwdOKq44xGzj4aiAbyEQAUAniHD04+GogA8jEAWY5t5b5nK5ZDQEeWlGAAD4PgJRgGnuvWXFRR+q54AbvDgrAAB8G4EoADV+b1l58T4vzgYAAN/HbfcAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyuMvMj/HMIcB/8ToPwLcQiPwYzxwC/Fdzr/M4dugz/dTl0qBBg8w2t9stm82m0NBQj88TnID2RSDyczxzCPBfjV/nUV68Ty9t3OMRkoqLNik4IkpxCdeabb7yHrTmzlJLhDX4JwIRAPiQ5kJSSM+4Nr0HraMDS3NnqX0lrAHni0AEAAGgpTWFK/55QD17DzDb2juwND5LDfgrApGfYAE1gLM525rCMwNLc4u52/MSV3PHZx0U/AGByE+wgBrAubRmTWHjxdzNnTG6kEttzS0Wb24dVHMLyFv7Ha3B+iacLwKRH2EBNYD20HidUmMXujaoNeugmltA3tqQ1Jqww/omnC8CkQ/i8hiAztLcJS6XyyX7pVd0+Nqg1txl11yIaS7sNA5T7V0DZ5wCH4HIB3F5DEBnaf4Sl/d+35zr7NVpzZ0xPzNMNVfDhTwMkzNOgY9A5KO4PAagszR3psYfnVlHa9ZPSee3lqmtd9Rxdsk/WCoQLV68WH/4wx9UUlKia665Ri+++KJ+8IMfeHtaAIBO0tbLdM1p7R11nfH4A1w4ywSi1157TRkZGVq8eLFuvPFGvfzyy0pLS9Nnn32m3r17e21erBcCAO9q7WW6xlp7R11rH38gnfusEWebOo5lAtELL7ygadOm6YEHHpAkvfjii1q/fr2WLFmi7Oxsr82L9UIA4L9ae0ddY82FqcZnjVr7sM3WvgOvtc+Dam3oam5cc9/R1uN3NksEotraWhUVFemXv/ylR3tqaqq2bNnS7Gfcbrfcbre5X1lZKUmqqqpq17mdOHFC9XVunXKfNNsaTtWp4sv/T9+E/PssUdU3BxRUVdlubZVf79fWrcd14sQJs23nzp06euCQx1waf9Yb39ne3+uN72zv7/XlP9/Wfq8v//m2ts3f/syba/P1P/OA/u/r4l4ex6uvc2vr1q0ev6uWrN2krpGx5pijhz6TvW+SIs743PEjxfr9q5+pR94Oj3FBXSLUI8Z51rbvjpXq5xNvVlJSkketjb+3teMaf8f5HH/x/Id10003qb2d/nfbMIyzDzQs4OuvvzYkGf/85z892n/3u98ZCQkJzX5m/vz5hiQ2NjY2Nja2ANiKi4vPmhUscYboNJvN5rFvGEaTttPmzZunzMxMc7+hoUHHjh1Tr169WvxMZ6iqqpLT6VRxcbG6d+/utXl0BqvUapU6JevUapU6JevUapU6pcCr1TAMHT9+XA6H46zjLBGIoqKiFBQUpNLSUo/2srIyxcTENPuZsLAwhYWFebT16NGjo6Z43rp37x4Q/6G2hlVqtUqdknVqtUqdknVqtUqdUmDVarfbzznmok6Yh9eFhoZqyJAhys/P92jPz8/X8OHDvTQrAADgKyxxhkiSMjMzlZ6erqFDhyolJUWvvPKKvvrqK/3sZz/z9tQAAICXWSYQ3X333Tp69KiefvpplZSUKDExUe+884769Onj7amdl7CwMM2fP7/J5bxAZJVarVKnZJ1arVKnZJ1arVKnZK1az2QzjHPdhwYAABDYLLGGCAAA4GwIRAAAwPIIRAAAwPIIRAAAwPIIRD4oOztb119/vSIiIhQdHa077rhDe/fu9RhjGIaysrLkcDjUpUsXjRw5Urt37/bSjNtuyZIluvbaa80HgKWkpOgf//iH2R8odTaWnZ0tm82mjIwMsy1Qas3KypLNZvPYYmP//c6iQKlTkr7++mv9+Mc/Vq9evdS1a1cNGjRIRUVFZn+g1Nq3b98mf6c2m00zZ86UFDh1StKpU6f0q1/9SvHx8erSpYv69eunp59+Wg0NDeaYQKn3+PHjysjIUJ8+fdSlSxcNHz5c27dvN/sDpc5Wu6CXhKFDjBkzxli+fLmxa9cuw+VyGbfffrvRu3dvo7q62hzz7LPPGhEREcbf/vY3Y+fOncbdd99txMXFGVVVVV6c+fl78803jbffftvYu3evsXfvXuPxxx83QkJCjF27dhmGETh1nmnbtm1G3759jWuvvdZ4+OGHzfZAqXX+/PnGNddcY5SUlJhbWVmZ2R8odR47dszo06ePMXXqVKOwsNA4ePCgsWHDBmP//v3mmECptayszOPvMz8/35BkvPfee4ZhBE6dhmEYv/3tb41evXoZf//7342DBw8af/3rX42LL77YePHFF80xgVLvpEmTjKuvvtooKCgw9u3bZ8yfP9/o3r27cfjwYcMwAqfO1iIQ+YGysjJDklFQUGAYhmE0NDQYsbGxxrPPPmuOqampMex2u/HSSy95a5rtpmfPnsaf//zngKzz+PHjRv/+/Y38/HxjxIgRZiAKpFrnz59vDBw4sNm+QKrzscceM2666aYW+wOp1sYefvhh4/LLLzcaGhoCrs7bb7/duP/++z3aJk6caPz4xz82DCNw/l6/++47IygoyPj73//u0T5w4EDjiSeeCJg6zweXzPxAZWWlJCkyMlKSdPDgQZWWlio1NdUcExYWphEjRmjLli1emWN7qK+v15o1a3TixAmlpKQEZJ0zZ87U7bffrltuucWjPdBq3bdvnxwOh+Lj43XPPffowIEDkgKrzjfffFNDhw7Vj370I0VHR2vw4MFaunSp2R9ItZ6ptrZWOTk5uv/++2Wz2QKuzptuukkbN27U559/Lkn65JNPtHnzZt12222SAufv9dSpU6qvr1d4eLhHe5cuXbR58+aAqfN8EIh8nGEYyszM1E033aTExERJMl9S2/jFtDExMU1eYOsPdu7cqYsvvlhhYWH62c9+pnXr1unqq68OuDrXrFmjHTt2KDs7u0lfINWanJyslStXav369Vq6dKlKS0s1fPhwHT16NKDqPHDggJYsWaL+/ftr/fr1+tnPfqbZs2dr5cqVkgLr7/RMr7/+uioqKjR16lRJgVfnY489pnvvvVdXXnmlQkJCNHjwYGVkZOjee++VFDj1RkREKCUlRb/5zW/0zTffqL6+Xjk5OSosLFRJSUnA1Hk+LPPqDn/10EMP6dNPP9XmzZub9NlsNo99wzCatPmDAQMGyOVyqaKiQn/72980ZcoUFRQUmP2BUGdxcbEefvhhvfvuu03+H9mZAqHWtLQ08+ekpCSlpKTo8ssv16uvvqphw4ZJCow6GxoaNHToUD3zzDOSpMGDB2v37t1asmSJfvKTn5jjAqHWMy1btkxpaWlyOBwe7YFS52uvvaacnBytXr1a11xzjVwulzIyMuRwODRlyhRzXCDUu2rVKt1///269NJLFRQUpOuuu06TJ0/Wjh07zDGBUGdrcYbIh82aNUtvvvmm3nvvPV122WVm++k7dhqn9LKysiZp3h+Ehobqiiuu0NChQ5Wdna2BAwfqT3/6U0DVWVRUpLKyMg0ZMkTBwcEKDg5WQUGB/vu//1vBwcFmPYFQa2PdunVTUlKS9u3bF1B/p3Fxcbr66qs92q666ip99dVXkgLvf6eS9OWXX2rDhg164IEHzLZAq/O//uu/9Mtf/lL33HOPkpKSlJ6erkceecQ8sxtI9V5++eUqKChQdXW1iouLtW3bNtXV1Sk+Pj6g6mwtApEPMgxDDz30kNauXatNmzYpPj7eo//0f6z5+flmW21trQoKCjR8+PDOnm67MwxDbrc7oOocPXq0du7cKZfLZW5Dhw7VfffdJ5fLpX79+gVMrY253W7t2bNHcXFxAfV3euONNzZ5HMbnn39uvjA6kGo9bfny5YqOjtbtt99utgVand99950uusjzn8agoCDztvtAq1f6/v+0xMXFqby8XOvXr9d//Md/BGSd5+Slxdw4i5///OeG3W433n//fY9bXb/77jtzzLPPPmvY7XZj7dq1xs6dO417773XL2+HnDdvnvHBBx8YBw8eND799FPj8ccfNy666CLj3XffNQwjcOpszpl3mRlG4NQ6Z84c4/333zcOHDhgbN261Rg3bpwRERFhHDp0yDCMwKlz27ZtRnBwsPG73/3O2Ldvn5Gbm2t07drVyMnJMccESq2GYRj19fVG7969jccee6xJXyDVOWXKFOPSSy81b7tfu3atERUVZTz66KPmmECpNy8vz/jHP/5hHDhwwHj33XeNgQMHGjfccINRW1trGEbg1NlaBCIfJKnZbfny5eaYhoYGY/78+UZsbKwRFhZm/PCHPzR27tzpvUm30f3332/06dPHCA0NNS655BJj9OjRZhgyjMCpszmNA1Gg1Hr6WSUhISGGw+EwJk6caOzevdvsD5Q6DcMw3nrrLSMxMdEICwszrrzySuOVV17x6A+kWtevX29IMvbu3dukL5DqrKqqMh5++GGjd+/eRnh4uNGvXz/jiSeeMNxutzkmUOp97bXXjH79+hmhoaFGbGysMXPmTKOiosLsD5Q6W8tmGIbhxRNUAAAAXscaIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgABKy8vTzfddJN69OihXr16ady4cfriiy/M/i1btmjQoEEKDw/X0KFD9frrr8tms8nlcpljPvvsM9122226+OKLFRMTo/T0dP3rX//yQjUAOhKBCEDAOnHihDIzM7V9+3Zt3LhRF110ke688041NDTo+PHjGj9+vJKSkrRjxw795je/0WOPPebx+ZKSEo0YMUKDBg3Sxx9/rLy8PB05ckSTJk3yUkUAOgpvuwdgGd9++62io6O1c+dObd68Wb/61a90+PBhhYeHS5L+/Oc/a/r06fq///s/DRo0SE8++aQKCwu1fv168xiHDx+W0+nU3r17lZCQ4K1SALQzzhABCFhffPGFJk+erH79+ql79+6Kj4+XJH311Vfau3evrr32WjMMSdINN9zg8fmioiK99957uvjii83tyiuvNI8NIHAEe3sCANBRxo8fL6fTqaVLl8rhcKihoUGJiYmqra2VYRiy2Wwe4xufMG9oaND48eP1+9//vsmx4+LiOnTuADoXgQhAQDp69Kj27Nmjl19+WT/4wQ8kSZs3bzb7r7zySuXm5srtdissLEyS9PHHH3sc47rrrtPf/vY39e3bV8HB/LoEAhmXzAAEpJ49e6pXr1565ZVXtH//fm3atEmZmZlm/+TJk9XQ0KAZM2Zoz549Wr9+vf74xz9KknnmaObMmTp27Jjuvfdebdu2TQcOHNC7776r+++/X/X19V6pC0DHIBABCEgXXXSR1qxZo6KiIiUmJuqRRx7RH/7wB7O/e/fueuutt+RyuTRo0CA98cQTevLJJyXJXFfkcDj0z3/+U/X19RozZowSExP18MMPy26366KL+PUJBBLuMgOA/yc3N1c//elPVVlZqS5dunh7OgA6ERfFAVjWypUr1a9fP1166aX65JNP9Nhjj2nSpEmEIcCCCEQALKu0tFRPPvmkSktLFRcXpx/96Ef63e9+5+1pAfACLpkBAADLY1UgAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwvP8f83w3KHeVBI0AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.histplot(bank['age'])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "fac41293",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>age</th>\n",
" <th>balance</th>\n",
" <th>day</th>\n",
" <th>duration</th>\n",
" <th>campaign</th>\n",
" <th>pdays</th>\n",
" <th>previous</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>45211.000000</td>\n",
" <td>45211.000000</td>\n",
" <td>45211.000000</td>\n",
" <td>45211.000000</td>\n",
" <td>45211.000000</td>\n",
" <td>45211.000000</td>\n",
" <td>45211.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>40.936210</td>\n",
" <td>1362.272058</td>\n",
" <td>15.806419</td>\n",
" <td>258.163080</td>\n",
" <td>2.763841</td>\n",
" <td>40.197828</td>\n",
" <td>0.580323</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>10.618762</td>\n",
" <td>3044.765829</td>\n",
" <td>8.322476</td>\n",
" <td>257.527812</td>\n",
" <td>3.098021</td>\n",
" <td>100.128746</td>\n",
" <td>2.303441</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>18.000000</td>\n",
" <td>-8019.000000</td>\n",
" <td>1.000000</td>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" <td>-1.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>33.000000</td>\n",
" <td>72.000000</td>\n",
" <td>8.000000</td>\n",
" <td>103.000000</td>\n",
" <td>1.000000</td>\n",
" <td>-1.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>39.000000</td>\n",
" <td>448.000000</td>\n",
" <td>16.000000</td>\n",
" <td>180.000000</td>\n",
" <td>2.000000</td>\n",
" <td>-1.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>48.000000</td>\n",
" <td>1428.000000</td>\n",
" <td>21.000000</td>\n",
" <td>319.000000</td>\n",
" <td>3.000000</td>\n",
" <td>-1.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>95.000000</td>\n",
" <td>102127.000000</td>\n",
" <td>31.000000</td>\n",
" <td>4918.000000</td>\n",
" <td>63.000000</td>\n",
" <td>871.000000</td>\n",
" <td>275.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" age balance day duration campaign \\\n",
"count 45211.000000 45211.000000 45211.000000 45211.000000 45211.000000 \n",
"mean 40.936210 1362.272058 15.806419 258.163080 2.763841 \n",
"std 10.618762 3044.765829 8.322476 257.527812 3.098021 \n",
"min 18.000000 -8019.000000 1.000000 0.000000 1.000000 \n",
"25% 33.000000 72.000000 8.000000 103.000000 1.000000 \n",
"50% 39.000000 448.000000 16.000000 180.000000 2.000000 \n",
"75% 48.000000 1428.000000 21.000000 319.000000 3.000000 \n",
"max 95.000000 102127.000000 31.000000 4918.000000 63.000000 \n",
"\n",
" pdays previous \n",
"count 45211.000000 45211.000000 \n",
"mean 40.197828 0.580323 \n",
"std 100.128746 2.303441 \n",
"min -1.000000 0.000000 \n",
"25% -1.000000 0.000000 \n",
"50% -1.000000 0.000000 \n",
"75% -1.000000 0.000000 \n",
"max 871.000000 275.000000 "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bank.describe()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "2d0ea922",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(blue-collar 9732\n",
" management 9458\n",
" technician 7597\n",
" admin. 5171\n",
" services 4154\n",
" retired 2264\n",
" self-employed 1579\n",
" entrepreneur 1487\n",
" unemployed 1303\n",
" housemaid 1240\n",
" student 938\n",
" unknown 288\n",
" Name: job, dtype: int64,\n",
" (45211, 17))"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bank['job'].value_counts(),bank.shape"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "4d26aa68",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(married 27214\n",
" single 12790\n",
" divorced 5207\n",
" Name: marital, dtype: int64,\n",
" (45211, 17))"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bank['marital'].value_counts(),bank.shape"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "0a6ed57c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(secondary 23202\n",
" tertiary 13301\n",
" primary 6851\n",
" unknown 1857\n",
" Name: education, dtype: int64,\n",
" (45211, 17))"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bank['education'].value_counts(),bank.shape"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "56d9ce80",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['blue-collar', 'management', 'technician', 'admin.', 'services',\n",
" 'retired', 'self-employed', 'entrepreneur', 'unemployed', 'housemaid',\n",
" 'student', 'unknown'],\n",
" dtype='object')"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bank['job'].value_counts().keys()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "3fda4b9a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([9732, 9458, 7597, 5171, 4154, 2264, 1579, 1487, 1303, 1240, 938,\n",
" 288], dtype=int64)"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bank['job'].value_counts().values"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "db085bca",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1EAAAGsCAYAAAA8Fi1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0Q0lEQVR4nO3de1xVZd7///cWFEFhJygghUrFrThQmZZiB2xUtCLr7qBFQ3VnaoMnUm/Nu5NNBWmlNVmm1kTjITuo02GMtBNpHiOZ0vCQh8QRwgo3YvxA4fr+0c81bTDlsk14eD0fj/3HXuuz1rrW3tde7DfX2mu5jDFGAAAAAIB6adLYDQAAAACAkwkhCgAAAAAsEKIAAAAAwAIhCgAAAAAsEKIAAAAAwAIhCgAAAAAsEKIAAAAAwIJ/YzegMdXU1GjPnj0KDg6Wy+Vq7OYAAAAAaCTGGO3fv19RUVFq0uToY02ndYjas2ePoqOjG7sZAAAAAE4QhYWFOuuss45ac1qHqODgYEk/v1AhISGN3BoAAAAAjaWsrEzR0dFORjia0zpEHT6FLyQkhBAFAAAAoF4/8+HCEgAAAABggRAFAAAAABasQ9Snn36qa665RlFRUXK5XPrHP/7hNd8Yo0mTJikqKkqBgYHq1auXNm7c6FVTWVmpkSNHqnXr1mrRooUGDBig3bt3e9WUlpYqLS1NbrdbbrdbaWlp2rdvn1fNrl27dM0116hFixZq3bq1Ro0apaqqKttdAgAAAIB6sw5RBw4c0Pnnn6/p06cfcf6UKVM0depUTZ8+XevWrVNkZKT69u2r/fv3OzUZGRlavHixFixYoBUrVqi8vFwpKSmqrq52alJTU5Wfn6+cnBzl5OQoPz9faWlpzvzq6mpdffXVOnDggFasWKEFCxZo4cKFGjt2rO0uAQAAAEC9uYwx5rgXdrm0ePFiXXfddZJ+HoWKiopSRkaGJkyYIOnnUaeIiAhNnjxZw4YNk8fjUZs2bTRnzhwNGjRI0n8uNb5kyRL169dPBQUF6ty5s1avXq3u3btLklavXq3ExERt2rRJHTt21HvvvaeUlBQVFhYqKipKkrRgwQLdcccdKikpqdeFIsrKyuR2u+XxeLiwBAAAAHAas8kGPv1N1I4dO1RcXKzk5GRnWkBAgJKSkrRy5UpJUl5eng4ePOhVExUVpfj4eKdm1apVcrvdToCSpB49esjtdnvVxMfHOwFKkvr166fKykrl5eUdsX2VlZUqKyvzegAAAACADZ+GqOLiYklSRESE1/SIiAhnXnFxsZo1a6ZWrVodtSY8PLzO+sPDw71qam+nVatWatasmVNTW1ZWlvMbK7fbzY12AQAAAFhrkKvz1b62ujHmmNdbr11zpPrjqfmliRMnyuPxOI/CwsKjtgkAAAAAavNpiIqMjJSkOiNBJSUlzqhRZGSkqqqqVFpaetSa7777rs769+7d61VTezulpaU6ePBgnRGqwwICApwb63KDXQAAAADHw6chKiYmRpGRkVq2bJkzraqqSrm5uerZs6ckqWvXrmratKlXTVFRkTZs2ODUJCYmyuPxaO3atU7NmjVr5PF4vGo2bNigoqIip2bp0qUKCAhQ165dfblbAAAAAODwt12gvLxc33zzjfN8x44dys/PV2hoqNq1a6eMjAxlZmYqNjZWsbGxyszMVFBQkFJTUyVJbrdbgwcP1tixYxUWFqbQ0FCNGzdOCQkJ6tOnjyQpLi5O/fv315AhQzRz5kxJ0tChQ5WSkqKOHTtKkpKTk9W5c2elpaXpiSee0I8//qhx48ZpyJAhjDABAAAAaDDWIerzzz/XFVdc4TwfM2aMJOn2229Xdna2xo8fr4qKCqWnp6u0tFTdu3fX0qVLFRwc7Cwzbdo0+fv7a+DAgaqoqFDv3r2VnZ0tPz8/p2bevHkaNWqUcxW/AQMGeN2bys/PT//85z+Vnp6uSy65RIGBgUpNTdWTTz5p/yoAAAAAQD39pvtEney4TxQAAAAAqRHvEwUAAAAApzpCFAAAAABYIEQBAAAAgAXrC0ug4RzjfsQ4SZ2+vzoEAAA4NTESBQAAAAAWCFEAAAAAYIEQBQAAAAAWCFEAAAAAYIEQBQAAAAAWCFEAAAAAYIEQBQAAAAAWCFEAAAAAYIEQBQAAAAAW/Bu7AQAagMvV2C1AQzCmsVsAAADESBQAAAAAWCFEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFQhQAAAAAWCBEAQAAAIAFn4eoQ4cO6f7771dMTIwCAwN19tln6y9/+YtqamqcGmOMJk2apKioKAUGBqpXr17auHGj13oqKys1cuRItW7dWi1atNCAAQO0e/dur5rS0lKlpaXJ7XbL7XYrLS1N+/bt8/UuAQAAAIDD5yFq8uTJeuGFFzR9+nQVFBRoypQpeuKJJ/Tss886NVOmTNHUqVM1ffp0rVu3TpGRkerbt6/279/v1GRkZGjx4sVasGCBVqxYofLycqWkpKi6utqpSU1NVX5+vnJycpSTk6P8/HylpaX5epcAAAAAwOEyxhhfrjAlJUURERF66aWXnGk33HCDgoKCNGfOHBljFBUVpYyMDE2YMEHSz6NOERERmjx5soYNGyaPx6M2bdpozpw5GjRokCRpz549io6O1pIlS9SvXz8VFBSoc+fOWr16tbp37y5JWr16tRITE7Vp0yZ17NjxmG0tKyuT2+2Wx+NRSEiIL1+G4+JyNXYL0BB8+wmrJzrTqalROhMAAKcHm2zg85GoSy+9VB9++KG2bNkiSfrXv/6lFStW6KqrrpIk7dixQ8XFxUpOTnaWCQgIUFJSklauXClJysvL08GDB71qoqKiFB8f79SsWrVKbrfbCVCS1KNHD7ndbqemtsrKSpWVlXk9AAAAAMCGv69XOGHCBHk8HnXq1El+fn6qrq7WY489pltuuUWSVFxcLEmKiIjwWi4iIkLffvutU9OsWTO1atWqTs3h5YuLixUeHl5n++Hh4U5NbVlZWXr44Yd/2w4CAAAAOK35fCTqtdde09y5czV//nx98cUXeuWVV/Tkk0/qlVde8apz1TrdyBhTZ1pttWuOVH+09UycOFEej8d5FBYW1ne3AAAAAEBSA4xE/e///q/uvfde3XzzzZKkhIQEffvtt8rKytLtt9+uyMhIST+PJLVt29ZZrqSkxBmdioyMVFVVlUpLS71Go0pKStSzZ0+n5rvvvquz/b1799YZ5TosICBAAQEBvtlRAAAAAKcln49E/fTTT2rSxHu1fn5+ziXOY2JiFBkZqWXLljnzq6qqlJub6wSkrl27qmnTpl41RUVF2rBhg1OTmJgoj8ejtWvXOjVr1qyRx+NxagAAAADA13w+EnXNNdfoscceU7t27fSHP/xB69ev19SpU3XnnXdK+vkUvIyMDGVmZio2NlaxsbHKzMxUUFCQUlNTJUlut1uDBw/W2LFjFRYWptDQUI0bN04JCQnq06ePJCkuLk79+/fXkCFDNHPmTEnS0KFDlZKSUq8r8wEAAADA8fB5iHr22Wf1wAMPKD09XSUlJYqKitKwYcP04IMPOjXjx49XRUWF0tPTVVpaqu7du2vp0qUKDg52aqZNmyZ/f38NHDhQFRUV6t27t7Kzs+Xn5+fUzJs3T6NGjXKu4jdgwABNnz7d17sEAAAAAA6f3yfqZMJ9ovB74D5R8JnT93ANAECDa9T7RAEAAADAqYwQBQAAAAAWCFEAAAAAYIEQBQAAAAAWCFEAAAAAYIEQBQAAAAAWCFEAAAAAYIEQBQAAAAAW/Bu7AQCAE9h8btx8yknlps0A8FsxEgUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFhokRP373//Wn/70J4WFhSkoKEgXXHCB8vLynPnGGE2aNElRUVEKDAxUr169tHHjRq91VFZWauTIkWrdurVatGihAQMGaPfu3V41paWlSktLk9vtltvtVlpamvbt29cQuwQAAAAAkhogRJWWluqSSy5R06ZN9d577+nrr7/WU089pTPOOMOpmTJliqZOnarp06dr3bp1ioyMVN++fbV//36nJiMjQ4sXL9aCBQu0YsUKlZeXKyUlRdXV1U5Namqq8vPzlZOTo5ycHOXn5ystLc3XuwQAAAAADpcxxvhyhffee68+++wzLV++/IjzjTGKiopSRkaGJkyYIOnnUaeIiAhNnjxZw4YNk8fjUZs2bTRnzhwNGjRIkrRnzx5FR0dryZIl6tevnwoKCtS5c2etXr1a3bt3lyStXr1aiYmJ2rRpkzp27HjMtpaVlcntdsvj8SgkJMRHr8Dxc7kauwVoCL79hNUTnenU1BidaT596ZST2hgHJQA48dlkA5+PRL399tvq1q2bbrrpJoWHh6tLly6aPXu2M3/Hjh0qLi5WcnKyMy0gIEBJSUlauXKlJCkvL08HDx70qomKilJ8fLxTs2rVKrndbidASVKPHj3kdrudmtoqKytVVlbm9QAAAAAAGz4PUdu3b9eMGTMUGxur999/X3fffbdGjRqlv//975Kk4uJiSVJERITXchEREc684uJiNWvWTK1atTpqTXh4eJ3th4eHOzW1ZWVlOb+fcrvdio6O/m07CwAAAOC04/MQVVNTowsvvFCZmZnq0qWLhg0bpiFDhmjGjBleda5apxsZY+pMq612zZHqj7aeiRMnyuPxOI/CwsL67hYAAAAASGqAENW2bVt17tzZa1pcXJx27dolSYqMjJSkOqNFJSUlzuhUZGSkqqqqVFpaetSa7777rs729+7dW2eU67CAgACFhIR4PQAAAADAhs9D1CWXXKLNmzd7TduyZYvat28vSYqJiVFkZKSWLVvmzK+qqlJubq569uwpSeratauaNm3qVVNUVKQNGzY4NYmJifJ4PFq7dq1Ts2bNGnk8HqcGAAAAAHzN39crvOeee9SzZ09lZmZq4MCBWrt2rWbNmqVZs2ZJ+vkUvIyMDGVmZio2NlaxsbHKzMxUUFCQUlNTJUlut1uDBw/W2LFjFRYWptDQUI0bN04JCQnq06ePpJ9Ht/r3768hQ4Zo5syZkqShQ4cqJSWlXlfmAwAAAIDj4fMQddFFF2nx4sWaOHGi/vKXvygmJkZPP/20br31Vqdm/PjxqqioUHp6ukpLS9W9e3ctXbpUwcHBTs20adPk7++vgQMHqqKiQr1791Z2drb8/Pycmnnz5mnUqFHOVfwGDBig6dOn+3qXAAAAAMDh8/tEnUy4TxR+D9wnCj7DfaLgC9wnCgCOqFHvEwUAAAAApzJCFAAAAABYIEQBAAAAgAVCFAAAAABYIEQBAAAAgAVCFAAAAABYIEQBAAAAgAVCFAAAAABYIEQBAAAAgAVCFAAAAABYIEQBAAAAgAVCFAAAAABYIEQBAAAAgAVCFAAAAABYIEQBAAAAgAVCFAAAAABYIEQBAAAAgAVCFAAAAABYIEQBAAAAgAVCFAAAAABYIEQBAAAAgAVCFAAAAABYIEQBAAAAgAVCFAAAAABY8G/sBgAAgNOBq7EbAJ8zjd0AoNEwEgUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGDBv7EbAAAAANSH62FXYzcBDcA8ZBq7CdYYiQIAAAAACw0eorKysuRyuZSRkeFMM8Zo0qRJioqKUmBgoHr16qWNGzd6LVdZWamRI0eqdevWatGihQYMGKDdu3d71ZSWliotLU1ut1tut1tpaWnat29fQ+8SAAAAgNNYg4aodevWadasWTrvvPO8pk+ZMkVTp07V9OnTtW7dOkVGRqpv377av3+/U5ORkaHFixdrwYIFWrFihcrLy5WSkqLq6mqnJjU1Vfn5+crJyVFOTo7y8/OVlpbWkLsEAAAA4DTXYCGqvLxct956q2bPnq1WrVo5040xevrpp3Xffffp+uuvV3x8vF555RX99NNPmj9/viTJ4/HopZde0lNPPaU+ffqoS5cumjt3rr766it98MEHkqSCggLl5OToxRdfVGJiohITEzV79my9++672rx5c0PtFgAAAIDTXIOFqOHDh+vqq69Wnz59vKbv2LFDxcXFSk5OdqYFBAQoKSlJK1eulCTl5eXp4MGDXjVRUVGKj493alatWiW3263u3bs7NT169JDb7XZqaqusrFRZWZnXAwAAAABsNMjV+RYsWKAvvvhC69atqzOvuLhYkhQREeE1PSIiQt9++61T06xZM68RrMM1h5cvLi5WeHh4nfWHh4c7NbVlZWXp4Ycftt8hAAAAAPj/+XwkqrCwUKNHj9bcuXPVvHnzX61zubwvUWmMqTOttto1R6o/2nomTpwoj8fjPAoLC4+6PQAAAACozechKi8vTyUlJeratav8/f3l7++v3Nxc/fWvf5W/v78zAlV7tKikpMSZFxkZqaqqKpWWlh615rvvvquz/b1799YZ5TosICBAISEhXg8AAAAAsOHzENW7d2999dVXys/Pdx7dunXTrbfeqvz8fJ199tmKjIzUsmXLnGWqqqqUm5urnj17SpK6du2qpk2betUUFRVpw4YNTk1iYqI8Ho/Wrl3r1KxZs0Yej8epAQAAAABf8/lvooKDgxUfH+81rUWLFgoLC3OmZ2RkKDMzU7GxsYqNjVVmZqaCgoKUmpoqSXK73Ro8eLDGjh2rsLAwhYaGaty4cUpISHAuVBEXF6f+/ftryJAhmjlzpiRp6NChSklJUceOHX29WwAAAAAgqYEuLHEs48ePV0VFhdLT01VaWqru3btr6dKlCg4OdmqmTZsmf39/DRw4UBUVFerdu7eys7Pl5+fn1MybN0+jRo1yruI3YMAATZ8+/XffHwAAAACnD5cxxjR2IxpLWVmZ3G63PB7PCfH7qGNcVwMnqUb5hNGZTk2N0Znm05dOOamN9WefvnTq+f37kuth+tGpyDx0YsQRm2zQYPeJAgAAAIBTESEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACwQogAAAADAAiEKAAAAACz4PERlZWXpoosuUnBwsMLDw3Xddddp8+bNXjXGGE2aNElRUVEKDAxUr169tHHjRq+ayspKjRw5Uq1bt1aLFi00YMAA7d6926umtLRUaWlpcrvdcrvdSktL0759+3y9SwAAAADg8HmIys3N1fDhw7V69WotW7ZMhw4dUnJysg4cOODUTJkyRVOnTtX06dO1bt06RUZGqm/fvtq/f79Tk5GRocWLF2vBggVasWKFysvLlZKSourqaqcmNTVV+fn5ysnJUU5OjvLz85WWlubrXQIAAAAAh8sYYxpyA3v37lV4eLhyc3N1+eWXyxijqKgoZWRkaMKECZJ+HnWKiIjQ5MmTNWzYMHk8HrVp00Zz5szRoEGDJEl79uxRdHS0lixZon79+qmgoECdO3fW6tWr1b17d0nS6tWrlZiYqE2bNqljx47HbFtZWZncbrc8Ho9CQkIa7kWoJ5ersVuAhtCwn7BfQWc6NTVGZ5pPXzrlpDbGQUmS6Eunnt+/L7keph+disxDjXVc8maTDRr8N1Eej0eSFBoaKknasWOHiouLlZyc7NQEBAQoKSlJK1eulCTl5eXp4MGDXjVRUVGKj493alatWiW32+0EKEnq0aOH3G63U1NbZWWlysrKvB4AAAAAYKNBQ5QxRmPGjNGll16q+Ph4SVJxcbEkKSIiwqs2IiLCmVdcXKxmzZqpVatWR60JDw+vs83w8HCnprasrCzn91Nut1vR0dG/bQcBAAAAnHYaNESNGDFCX375pV599dU681y1TjcyxtSZVlvtmiPVH209EydOlMfjcR6FhYX12Q0AAAAAcDRYiBo5cqTefvttffzxxzrrrLOc6ZGRkZJUZ7SopKTEGZ2KjIxUVVWVSktLj1rz3Xff1dnu3r1764xyHRYQEKCQkBCvBwAAAADY8HmIMsZoxIgRWrRokT766CPFxMR4zY+JiVFkZKSWLVvmTKuqqlJubq569uwpSeratauaNm3qVVNUVKQNGzY4NYmJifJ4PFq7dq1Ts2bNGnk8HqcGAAAAAHzN39crHD58uObPn6+33npLwcHBzoiT2+1WYGCgXC6XMjIylJmZqdjYWMXGxiozM1NBQUFKTU11agcPHqyxY8cqLCxMoaGhGjdunBISEtSnTx9JUlxcnPr3768hQ4Zo5syZkqShQ4cqJSWlXlfmAwAAAIDj4fMQNWPGDElSr169vKa//PLLuuOOOyRJ48ePV0VFhdLT01VaWqru3btr6dKlCg4OduqnTZsmf39/DRw4UBUVFerdu7eys7Pl5+fn1MybN0+jRo1yruI3YMAATZ8+3de7BAAAAACOBr9P1ImM+0Th98B9ouAz3CcKvsB9ouAz3CcKvsF9ogAAAADgFEeIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsECIAgAAAAALhCgAAAAAsHDSh6jnn39eMTExat68ubp27arly5c3dpMAAAAAnMJO6hD12muvKSMjQ/fdd5/Wr1+vyy67TFdeeaV27drV2E0DAAAAcIryb+wG/BZTp07V4MGDddddd0mSnn76ab3//vuaMWOGsrKy6tRXVlaqsrLSee7xeCRJZWVlv0+DcVqie8FnGqMz/fT7bxINjIMSfKYR+tL/9/tvEg3vRPkufrgdxphj1rpMfapOQFVVVQoKCtIbb7yh//7v/3amjx49Wvn5+crNza2zzKRJk/Twww//ns0EAAAAcBIpLCzUWWedddSak3Yk6vvvv1d1dbUiIiK8pkdERKi4uPiIy0ycOFFjxoxxntfU1OjHH39UWFiYXC5Xg7YX/1FWVqbo6GgVFhYqJCSksZuDkxh9Cb5CX4Iv0I/gK/SlxmGM0f79+xUVFXXM2pM2RB1WO/wYY341EAUEBCggIMBr2hlnnNFQTcMxhISEcGCAT9CX4Cv0JfgC/Qi+Ql/6/bnd7nrVnbQXlmjdurX8/PzqjDqVlJTUGZ0CAAAAAF85aUNUs2bN1LVrVy1btsxr+rJly9SzZ89GahUAAACAU91JfTrfmDFjlJaWpm7duikxMVGzZs3Srl27dPfddzd203AUAQEBeuihh+qcWgnYoi/BV+hL8AX6EXyFvnTiO2mvznfY888/rylTpqioqEjx8fGaNm2aLr/88sZuFgAAAIBT1EkfogAAAADg93TS/iYKAAAAABoDIQoAAAAALBCiAAAAAMACIeo00qtXL2VkZPzq/A4dOujpp5/+3dpzvGrvx8nSbgANb+fOnXK5XMrPz/9N67njjjt03XXX/a7bxInNV+/zsf4WA7/E8eXEdVJf4hwATgY7d+5UTEyM1q9frwsuuKCxm3NC6dWrly644IIT7h8hzzzzjOp73aXo6GgVFRWpdevWDdwqnAoWLVqkpk2bNnYzcJLg+HLiIkThtFddXS2Xy6UmTRiYBfAzt9td71o/Pz9FRkY2YGtwKgkNDW3sJuAEcfDgwWMGao4vJy6+NZ5mDh06pBEjRuiMM85QWFiY7r///iP+t/VIw8f79u2Ty+XSJ5984kz7+uuvddVVV6lly5aKiIhQWlqavv/++6O2obKyUuPHj1d0dLQCAgIUGxurl156yZmfm5uriy++WAEBAWrbtq3uvfdeHTp0qN77OHXqVCUkJKhFixaKjo5Wenq6ysvLnfnZ2dk644wz9O6776pz584KCAjQt99+W+/1n8p69eqlkSNHKiMjQ61atVJERIRmzZqlAwcO6H/+538UHBysc845R++9956knwPo4MGDFRMTo8DAQHXs2FHPPPOM1zoPnxb15JNPqm3btgoLC9Pw4cN18OBBp2bu3Lnq1q2bgoODFRkZqdTUVJWUlHit5+2331ZsbKwCAwN1xRVX6JVXXpHL5dK+ffucmpUrV+ryyy9XYGCgoqOjNWrUKB04cMCZ36FDBz366KO67bbb1LJlS7Vv315vvfWW9u7dq2uvvVYtW7ZUQkKCPv/8c69t12e9mZmZuvPOOxUcHKx27dpp1qxZzvyYmBhJUpcuXeRyudSrV6/je4NOMXfccYdyc3P1zDPPyOVyyeVyaefOncc8rtTU1Gjy5Mk699xzFRAQoHbt2umxxx7zWvf27dt1xRVXKCgoSOeff75WrVrlzDt8DHj//fcVFxenli1bqn///ioqKvJq2y9P5zvaNmsfL331uUDDysnJ0aWXXur8PUxJSdG2bduc+WvXrlWXLl3UvHlzdevWTevXr/da/pNPPpHL5dL777+vLl26KDAwUH/84x9VUlKi9957T3FxcQoJCdEtt9yin376yVnuSKekH+34gRPLm2++qYSEBAUGBiosLEx9+vRx/h68/PLLiouLU/PmzdWpUyc9//zzznKHjxOvv/66evXqpebNm+v5559XYGCgcnJyvLaxaNEitWjRQuXl5Uf8PrZx40ZdffXVCgkJUXBwsC677DKvvnu0dlRVVWnEiBFq27atmjdvrg4dOigrK6uBXq1TnMFpIykpybRs2dKMHj3abNq0ycydO9cEBQWZWbNmGWOMad++vZk2bZoxxpgdO3YYSWb9+vXO8qWlpUaS+fjjj40xxuzZs8e0bt3aTJw40RQUFJgvvvjC9O3b11xxxRVHbcfAgQNNdHS0WbRokdm2bZv54IMPzIIFC4wxxuzevdsEBQWZ9PR0U1BQYBYvXmxat25tHnroIa/9GD16tPP8l+02xphp06aZjz76yGzfvt18+OGHpmPHjubPf/6zM//ll182TZs2NT179jSfffaZ2bRpkykvL7d/QU9BSUlJJjg42DzyyCNmy5Yt5pFHHjFNmjQxV155pZk1a5bZsmWL+fOf/2zCwsLMgQMHTFVVlXnwwQfN2rVrzfbt250+9dprrznrvP32201ISIi5++67TUFBgXnnnXe8+p0xxrz00ktmyZIlZtu2bWbVqlWmR48e5sorr3Tm79ixwzRt2tSMGzfObNq0ybz66qvmzDPPNJJMaWmpMcaYL7/80rRs2dJMmzbNbNmyxXz22WemS5cu5o477nDW0759exMaGmpeeOEFZ1+Cg4NN//79zeuvv242b95srrvuOhMXF2dqamqs1/vcc8+ZrVu3mqysLNOkSRNTUFBgjDFm7dq1RpL54IMPTFFRkfnhhx8a5P072ezbt88kJiaaIUOGmKKiIlNUVGR27959zOPK+PHjTatWrUx2drb55ptvzPLly83s2bONMf85dnXq1Mm8++67ZvPmzebGG2807du3NwcPHjTG/OcY0KdPH7Nu3TqTl5dn4uLiTGpqqrON22+/3Vx77bVW2zx8vPTV5wIN68033zQLFy40W7ZsMevXrzfXXHONSUhIMNXV1aa8vNy0adPGDBo0yGzYsMG888475uyzz/Z6nz/++GMjyfTo0cOsWLHCfPHFF+bcc881SUlJJjk52XzxxRfm008/NWFhYebxxx93tnukv2FHO37gxLFnzx7j7+9vpk6danbs2GG+/PJL89xzz5n9+/ebWbNmmbZt25qFCxea7du3m4ULF5rQ0FCTnZ1tjPnPcaJDhw5Ozb///W9zww03mD/96U9e27nhhhvMLbfc4rXc4X63e/duExoaaq6//nqzbt06s3nzZvO3v/3NbNq0yRhjjtmOJ554wkRHR5tPP/3U7Ny50yxfvtzMnz//d3oFTy2EqNNIUlKS15dDY4yZMGGCiYuLM8bYh6gHHnjAJCcne22jsLDQSDKbN28+Yhs2b95sJJlly5Ydcf7//d//mY4dO3q18bnnnjMtW7Y01dXVzn4cLUTV9vrrr5uwsDDn+csvv2wkmfz8/F9d5nSVlJRkLr30Uuf5oUOHTIsWLUxaWpozraioyEgyq1atOuI60tPTzQ033OA8v/3220379u3NoUOHnGk33XSTGTRo0K+243Do2L9/vzHm534aHx/vVXPfffd5hai0tDQzdOhQr5rly5ebJk2amIqKCmPMz33ll3+sDu/LAw884ExbtWqVkWSKioqOe701NTUmPDzczJgxwxhz5M8Tflb783ys40pZWZkJCAhwAkxth1/rF1980Zm2ceNGI8n5Unr4GPDNN984Nc8995yJiIhwnv8yRNV3m0d7f33xuUDDKikpMZLMV199ZWbOnGlCQ0PNgQMHnPkzZsw4Yoj64IMPnJqsrCwjyWzbts2ZNmzYMNOvXz/n+ZH+hh3t+IETR15enpFkdu7cWWdedHR0nTDyyCOPmMTERGPMf44TTz/9tFfNokWLTMuWLZ2+5vF4TPPmzc0///lPr+UO97uJEyeamJgYU1VVdcQ2HqsdI0eONH/84x+9vmfh+HA632mmR48ecrlczvPExERt3bpV1dXV1uvKy8vTxx9/rJYtWzqPTp06SZK2bdumefPmec1bvny58vPz5efnp6SkpCOus6CgQImJiV5tvOSSS1ReXq7du3fXq10ff/yx+vbtqzPPPFPBwcG67bbb9MMPP3idftWsWTOdd9551vt8Ovjl6+Ln56ewsDAlJCQ40yIiIiTJOd3uhRdeULdu3dSmTRu1bNlSs2fP1q5du7zW+Yc//EF+fn7O87Zt23qdrrd+/Xpde+21at++vYKDg53T3Q6vZ/Pmzbrooou81nnxxRd7Pc/Ly1N2drZXn+vXr59qamq0Y8eOI+7f4X052v4dz3pdLpciIyPrnJKIYzvWcaWgoECVlZXq3bv3Udfzy/ejbdu2kuT1fgQFBemcc87xqvm196u+2/wlX3wu0LC2bdum1NRUnX322QoJCXFOu921a5cKCgp0/vnnKygoyKlPTEw84npqH1OCgoJ09tlne0071vvK8ePkcP7556t3795KSEjQTTfdpNmzZ6u0tFR79+5VYWGhBg8e7HXsevTRR71Os5Okbt26eT2/+uqr5e/vr7fffluStHDhQgUHBys5OfmIbcjPz9dll112xN9S1acdd9xxh/Lz89WxY0eNGjVKS5cu9cVLc1riwhI4osMXWTC/+L1U7XP1a2pqdM0112jy5Ml1lm/btq1qamrUvXt3Z9qZZ56pDz744KjbNcZ4BahftqH29CP59ttvddVVV+nuu+/WI488otDQUK1YsUKDBw/2an9gYGC91nc6qn1gdrlcXtMOv241NTV6/fXXdc899+ipp55SYmKigoOD9cQTT2jNmjXHXGdNTY0k6cCBA0pOTlZycrLmzp2rNm3aaNeuXerXr5+qqqokHb1fHFZTU6Nhw4Zp1KhRdfapXbt2R2zL4XX+2v4d73pr7yPq71jHle3bt9drPUd7T2vPP1xTu08dFhgYWK9tHuaLzwUa3jXXXKPo6GjNnj1bUVFRqqmpUXx8vKqqqup9ZUapbl87nveVvnBy8PPz07Jly7Ry5UotXbpUzz77rO677z698847kqTZs2d7fe85vMwvtWjRwut5s2bNdOONN2r+/Pm6+eabNX/+fA0aNEj+/kf+in6049HhPnO0dlx44YXasWOH3nvvPX3wwQcaOHCg+vTpozfffLMerwB+iRB1mlm9enWd57GxsXU+5G3atJEkFRUVqUuXLpJU5x4FF154oRYuXKgOHTr86oc9ODjY63lCQoJqamqUm5urPn361Knv3LmzFi5c6PWleeXKlQoODtaZZ555zP37/PPPdejQIT311FNOEHz99dePuRyOz/Lly9WzZ0+lp6c702r/1+1YNm3apO+//16PP/64oqOjJanOhR06deqkJUuWeE2rXXPhhRdq48aNOvfcc622fyy+WG+zZs0k6bhGfE91zZo183pdjnVcOXxxkQ8//FB33XXX79JG22364nOBhvXDDz+ooKBAM2fO1GWXXSZJWrFihTO/c+fOmjNnjioqKpwvrbX/fuL05HK5dMkll+iSSy7Rgw8+qPbt2+uzzz7TmWeeqe3bt+vWW2+1Xuett96q5ORkbdy4UR9//LEeeeSRX60977zz9Morrxzxyn4RERH1akdISIgGDRqkQYMG6cYbb1T//v31448/cuVIS5zOd5opLCzUmDFjtHnzZr366qt69tlnNXr06Dp1gYGB6tGjhx5//HF9/fXX+vTTT3X//fd71QwfPlw//vijbrnlFq1du1bbt2/X0qVLdeedd/7ql8UOHTro9ttv15133ql//OMf2rFjhz755BMn6KSnp6uwsFAjR47Upk2b9NZbb+mhhx7SmDFj6nUJ8nPOOUeHDh3Ss88+q+3bt2vOnDl64YUXjuOVQn2ce+65+vzzz/X+++9ry5YteuCBB7Ru3TqrdbRr107NmjVz3rO33367zh+QYcOGadOmTZowYYK2bNmi119/XdnZ2ZL+M8owYcIErVq1SsOHD1d+fr62bt2qt99+WyNHjvxN++iL9YaHhztXYPruu+/k8Xh+U5tOJR06dNCaNWu0c+dOff/998c8rjRv3lwTJkzQ+PHj9fe//13btm3T6tWrva7w6Wu22/TF5wINq1WrVgoLC9OsWbP0zTff6KOPPtKYMWOc+ampqWrSpIkGDx6sr7/+WkuWLNGTTz7ZaO3t3bu3pk+f3mjbx8/WrFmjzMxMff7559q1a5cWLVqkvXv3Ki4uTpMmTVJWVpaeeeYZbdmyRV999ZVefvllTZ069ZjrTUpKUkREhG699VZ16NBBPXr0+NXaESNGqKysTDfffLM+//xzbd26VXPmzNHmzZsl6ZjtmDZtmhYsWKBNmzZpy5YteuONNxQZGakzzjjDJ6/R6YQQdZq57bbbVFFRoYsvvljDhw/XyJEjNXTo0CPW/u1vf9PBgwfVrVs3jR49Wo8++qjX/KioKH322Weqrq5Wv379FB8fr9GjR8vtdh818MyYMUM33nij0tPT1alTJw0ZMsT5vdKZZ56pJUuWaO3atTr//PN19913a/DgwXUC3K+54IILNHXqVE2ePFnx8fGaN28el+5sQHfffbeuv/56DRo0SN27d9cPP/zg9d/3+mjTpo2ys7P1xhtvqHPnznr88cfrfFmJiYnRm2++qUWLFum8887TjBkzdN9990mSAgICJP3837nc3Fxt3bpVl112mbp06aIHHnjA+T3M8fLFev39/fXXv/5VM2fOVFRUlK699trf1KZTybhx4+Tn56fOnTurTZs2qqqqOuZx5YEHHtDYsWP14IMPKi4uToMGDWrw34/YbNMXnws0rCZNmmjBggXKy8tTfHy87rnnHj3xxBPO/JYtW+qdd97R119/rS5duui+++474immv5dt27Yd8/YhaHghISH69NNPddVVV+m//uu/dP/99+upp57SlVdeqbvuuksvvviisrOzlZCQoKSkJGVnZzu/tTsal8ulW265Rf/617+OOZIVFhamjz76SOXl5UpKSlLXrl01e/ZsZ1TqWO1o2bKlJk+erG7duumiiy7Szp07tWTJEu6VeRxcxubEXwA4QTz22GN64YUXVFhY2NhNAQAApxl+EwXgpPD888/roosuUlhYmD777DM98cQTGjFiRGM3CwAAnIYIUQBOClu3btWjjz6qH3/8Ue3atdPYsWM1ceLExm4WAAA4DXE6HwAAAABY4FdkAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFghRAAAAAGCBEAUAAAAAFv4fujLzp+ykLBAAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 1000x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(10,5))\n",
"plt.bar(list(bank['job'].value_counts().keys()[0:5]),list(bank['job'].value_counts()[0:5]),color=[\"blue\",\"red\",\"orange\",\"yellow\",\"green\"])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "88a30622",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['married', 'single', 'divorced'], dtype='object')"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bank['marital'].value_counts().keys()"
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "459f4311",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([27214, 12790, 5207], dtype=int64)"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bank['marital'].value_counts().values"
]
},
{
"cell_type": "code",
"execution_count": 63,
"id": "965ca480",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAGdCAYAAAAbudkLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArK0lEQVR4nO3df1TVdZ7H8ddV4UoI3wGJH3dFx80fa4vVhqWYk04ZWKI5tuWoc9PNbMrQWDVbayqdM6tWazVnPDvVTJvVWNTZomnKUCq1SFCj2FLR0cYEDcQUL4J6QfjsHx2/pyuaojLIx+fjnO853e/3fb98v56L99mX70WPMcYIAADAQh3a+gAAAABaC6EDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqd2voA2lJTU5O++eYbRUVFyePxtPXhAACA02CM0cGDB+Xz+dShww9fs7mgQ+ebb75RcnJyWx8GAAA4A+Xl5erWrdsPzlzQoRMVFSXpuz+o6OjoNj4aAABwOmpqapScnOy+j/+QCzp0jv24Kjo6mtABAKCdOZ3bTrgZGQAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1urU1gdgtdP45+NhMWPa+ggA4ILHFR0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1WhQ6Cxcu1FVXXaWoqCjFx8drzJgx2rp1a8jM5MmT5fF4QpZBgwaFzASDQU2fPl1xcXGKjIzU6NGjtWvXrpCZ6upq+f1+OY4jx3Hk9/t14MCBkJmysjKNGjVKkZGRiouL04wZM1RfX9+SUwIAABZrUeisWbNG9957r4qKipSfn6+jR48qPT1ddXV1IXMjRoxQRUWFuyxfvjxke3Z2tnJzc5WTk6OCggLV1tYqMzNTjY2N7syECRNUUlKivLw85eXlqaSkRH6/393e2NiokSNHqq6uTgUFBcrJydEbb7yhWbNmncmfAwAAsJE5C1VVVUaSWbNmjbtu0qRJ5uabbz7pcw4cOGDCwsJMTk6Ou2737t2mQ4cOJi8vzxhjzObNm40kU1RU5M4UFhYaSWbLli3GGGOWL19uOnToYHbv3u3OvPrqq8br9ZpAIHBaxx8IBIyk055vMYnlQl4AAK2iJe/fZ3WPTiAQkCTFxsaGrF+9erXi4+PVp08fTZ06VVVVVe624uJiNTQ0KD093V3n8/mUkpKitWvXSpIKCwvlOI4GDhzozgwaNEiO44TMpKSkyOfzuTMZGRkKBoMqLi4+4fEGg0HV1NSELAAAwF5nHDrGGM2cOVNDhgxRSkqKu/7GG2/UsmXL9OGHH2rx4sXasGGDrrvuOgWDQUlSZWWlwsPDFRMTE7K/hIQEVVZWujPx8fHNvmZ8fHzITEJCQsj2mJgYhYeHuzPHW7hwoXvPj+M4Sk5OPtPTBwAA7UCnM31iVlaWvvjiCxUUFISsHzdunPvfKSkpGjBggHr06KF3331XY8eOPen+jDHyeDzu4+//99nMfN/cuXM1c+ZM93FNTQ2xAwCAxc7ois706dP19ttva9WqVerWrdsPziYlJalHjx7atm2bJCkxMVH19fWqrq4OmauqqnKv0CQmJmrPnj3N9rV3796QmeOv3FRXV6uhoaHZlZ5jvF6voqOjQxYAAGCvFoWOMUZZWVl688039eGHH6pnz56nfM6+fftUXl6upKQkSVJqaqrCwsKUn5/vzlRUVGjjxo0aPHiwJCktLU2BQEDr1693Z9atW6dAIBAys3HjRlVUVLgzK1eulNfrVWpqaktOCwAAWMpjjDGnOzxt2jS98sor+vOf/6y+ffu66x3HUUREhGprazVv3jzdcsstSkpK0tdff60HH3xQZWVlKi0tVVRUlCTpnnvu0TvvvKOlS5cqNjZWs2fP1r59+1RcXKyOHTtK+u5en2+++UbPPvusJOmuu+5Sjx499Je//EXSdx8vv+KKK5SQkKAnnnhC+/fv1+TJkzVmzBj97ne/O63zqampkeM4CgQCrXN15yQ/QsMF4vS/tQAALdCi9++WfJxL0gmXF154wRhjzKFDh0x6erq5+OKLTVhYmOnevbuZNGmSKSsrC9nP4cOHTVZWlomNjTUREREmMzOz2cy+ffvMxIkTTVRUlImKijITJ0401dXVITM7d+40I0eONBERESY2NtZkZWWZI0eOnPb58PFyllZdAACtoiXv3y26omMbruigVV2431oA0Kpa8v7Nv3UFAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKzVotBZuHChrrrqKkVFRSk+Pl5jxozR1q1bQ2aMMZo3b558Pp8iIiI0bNgwbdq0KWQmGAxq+vTpiouLU2RkpEaPHq1du3aFzFRXV8vv98txHDmOI7/frwMHDoTMlJWVadSoUYqMjFRcXJxmzJih+vr6lpwSAACwWItCZ82aNbr33ntVVFSk/Px8HT16VOnp6aqrq3NnHn/8cT355JNasmSJNmzYoMTERN1www06ePCgO5Odna3c3Fzl5OSooKBAtbW1yszMVGNjozszYcIElZSUKC8vT3l5eSopKZHf73e3NzY2auTIkaqrq1NBQYFycnL0xhtvaNasWWfz5wEAAGxizkJVVZWRZNasWWOMMaapqckkJiaaRYsWuTNHjhwxjuOYZ555xhhjzIEDB0xYWJjJyclxZ3bv3m06dOhg8vLyjDHGbN682UgyRUVF7kxhYaGRZLZs2WKMMWb58uWmQ4cOZvfu3e7Mq6++arxerwkEAqd1/IFAwEg67fkWk1gu5AUA0Cpa8v59VvfoBAIBSVJsbKwkaceOHaqsrFR6ero74/V6NXToUK1du1aSVFxcrIaGhpAZn8+nlJQUd6awsFCO42jgwIHuzKBBg+Q4TshMSkqKfD6fO5ORkaFgMKji4uKzOS0AAGCJTmf6RGOMZs6cqSFDhiglJUWSVFlZKUlKSEgImU1ISNDOnTvdmfDwcMXExDSbOfb8yspKxcfHN/ua8fHxITPHf52YmBiFh4e7M8cLBoMKBoPu45qamtM+XwAA0P6c8RWdrKwsffHFF3r11VebbfN4PCGPjTHN1h3v+JkTzZ/JzPctXLjQvbnZcRwlJyf/4DEBAID27YxCZ/r06Xr77be1atUqdevWzV2fmJgoSc2uqFRVVblXXxITE1VfX6/q6uofnNmzZ0+zr7t3796QmeO/TnV1tRoaGppd6Tlm7ty5CgQC7lJeXt6S0wYAAO1Mi0LHGKOsrCy9+eab+vDDD9WzZ8+Q7T179lRiYqLy8/PddfX19VqzZo0GDx4sSUpNTVVYWFjITEVFhTZu3OjOpKWlKRAIaP369e7MunXrFAgEQmY2btyoiooKd2blypXyer1KTU094fF7vV5FR0eHLAAAwGItucv5nnvuMY7jmNWrV5uKigp3OXTokDuzaNEi4ziOefPNN82XX35pxo8fb5KSkkxNTY07c/fdd5tu3bqZ999/33z22WfmuuuuM5dffrk5evSoOzNixAhz2WWXmcLCQlNYWGj69+9vMjMz3e1Hjx41KSkp5vrrrzefffaZef/99023bt1MVlbWaZ8Pn7piadUFANAqWvL+3aK/jSWdcHnhhRfcmaamJvPoo4+axMRE4/V6zbXXXmu+/PLLkP0cPnzYZGVlmdjYWBMREWEyMzNNWVlZyMy+ffvMxIkTTVRUlImKijITJ0401dXVITM7d+40I0eONBERESY2NtZkZWWZI0eOnPb5EDosrboAAFpFS96/PcYY01ZXk9paTU2NHMdRIBBonR9jneIGbFjuwv3WAoBW1ZL3b/6tKwAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYq8Wh89FHH2nUqFHy+XzyeDx66623QrZPnjxZHo8nZBk0aFDITDAY1PTp0xUXF6fIyEiNHj1au3btCpmprq6W3++X4zhyHEd+v18HDhwImSkrK9OoUaMUGRmpuLg4zZgxQ/X19S09JQAAYKkWh05dXZ0uv/xyLVmy5KQzI0aMUEVFhbssX748ZHt2drZyc3OVk5OjgoIC1dbWKjMzU42Nje7MhAkTVFJSory8POXl5amkpER+v9/d3tjYqJEjR6qurk4FBQXKycnRG2+8oVmzZrX0lAAAgK3MWZBkcnNzQ9ZNmjTJ3HzzzSd9zoEDB0xYWJjJyclx1+3evdt06NDB5OXlGWOM2bx5s5FkioqK3JnCwkIjyWzZssUYY8zy5ctNhw4dzO7du92ZV1991Xi9XhMIBE7r+AOBgJF02vMtJrFcyAsAoFW05P27Ve7RWb16teLj49WnTx9NnTpVVVVV7rbi4mI1NDQoPT3dXefz+ZSSkqK1a9dKkgoLC+U4jgYOHOjODBo0SI7jhMykpKTI5/O5MxkZGQoGgyouLj7hcQWDQdXU1IQsAADAXuc8dG688UYtW7ZMH374oRYvXqwNGzbouuuuUzAYlCRVVlYqPDxcMTExIc9LSEhQZWWlOxMfH99s3/Hx8SEzCQkJIdtjYmIUHh7uzhxv4cKF7j0/juMoOTn5rM8XAACcvzqd6x2OGzfO/e+UlBQNGDBAPXr00LvvvquxY8ee9HnGGHk8Hvfx9//7bGa+b+7cuZo5c6b7uKamhtgBAMBirf7x8qSkJPXo0UPbtm2TJCUmJqq+vl7V1dUhc1VVVe4VmsTERO3Zs6fZvvbu3Rsyc/yVm+rqajU0NDS70nOM1+tVdHR0yAIAAOzV6qGzb98+lZeXKykpSZKUmpqqsLAw5efnuzMVFRXauHGjBg8eLElKS0tTIBDQ+vXr3Zl169YpEAiEzGzcuFEVFRXuzMqVK+X1epWamtrapwUAANqBFv/oqra2Vtu3b3cf79ixQyUlJYqNjVVsbKzmzZunW265RUlJSfr666/14IMPKi4uTj/72c8kSY7jaMqUKZo1a5a6du2q2NhYzZ49W/3799fw4cMlSf369dOIESM0depUPfvss5Kku+66S5mZmerbt68kKT09XZdeeqn8fr+eeOIJ7d+/X7Nnz9bUqVO5UgMAAL7T0o90rVq1ykhqtkyaNMkcOnTIpKenm4svvtiEhYWZ7t27m0mTJpmysrKQfRw+fNhkZWWZ2NhYExERYTIzM5vN7Nu3z0ycONFERUWZqKgoM3HiRFNdXR0ys3PnTjNy5EgTERFhYmNjTVZWljly5MhpnwsfL2dp1QUA0Cpa8v7tMcaYNuysNlVTUyPHcRQIBFrnKtBJborGBeLC/dYCgFbVkvdv/q0rAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWKtTWx8AgNbjme9p60NAGzOPmrY+BKBNcUUHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLVaHDofffSRRo0aJZ/PJ4/Ho7feeitkuzFG8+bNk8/nU0REhIYNG6ZNmzaFzASDQU2fPl1xcXGKjIzU6NGjtWvXrpCZ6upq+f1+OY4jx3Hk9/t14MCBkJmysjKNGjVKkZGRiouL04wZM1RfX9/SUwIAAJZqcejU1dXp8ssv15IlS064/fHHH9eTTz6pJUuWaMOGDUpMTNQNN9yggwcPujPZ2dnKzc1VTk6OCgoKVFtbq8zMTDU2NrozEyZMUElJifLy8pSXl6eSkhL5/X53e2Njo0aOHKm6ujoVFBQoJydHb7zxhmbNmtXSUwIAAJbyGGPMGT/Z41Fubq7GjBkj6burOT6fT9nZ2XrggQckfXf1JiEhQY899ph++ctfKhAI6OKLL9bLL7+scePGSZK++eYbJScna/ny5crIyFBpaakuvfRSFRUVaeDAgZKkoqIipaWlacuWLerbt6/ee+89ZWZmqry8XD6fT5KUk5OjyZMnq6qqStHR0ac8/pqaGjmOo0AgcFrzZ/AHdO73ifbjzL+1zhnPfF6DFzrzaNu/DoFzrSXv3+f0Hp0dO3aosrJS6enp7jqv16uhQ4dq7dq1kqTi4mI1NDSEzPh8PqWkpLgzhYWFchzHjRxJGjRokBzHCZlJSUlxI0eSMjIyFAwGVVxcfMLjCwaDqqmpCVkAAIC9zmnoVFZWSpISEhJC1ickJLjbKisrFR4erpiYmB+ciY+Pb7b/+Pj4kJnjv05MTIzCw8PdmeMtXLjQvefHcRwlJyefwVkCAID2olU+deU57kc2xphm6453/MyJ5s9k5vvmzp2rQCDgLuXl5T94TAAAoH07p6GTmJgoSc2uqFRVVblXXxITE1VfX6/q6uofnNmzZ0+z/e/duzdk5vivU11drYaGhmZXeo7xer2Kjo4OWQAAgL3Oaej07NlTiYmJys/Pd9fV19drzZo1Gjx4sCQpNTVVYWFhITMVFRXauHGjO5OWlqZAIKD169e7M+vWrVMgEAiZ2bhxoyoqKtyZlStXyuv1KjU19VyeFgAAaKc6tfQJtbW12r59u/t4x44dKikpUWxsrLp3767s7GwtWLBAvXv3Vu/evbVgwQJddNFFmjBhgiTJcRxNmTJFs2bNUteuXRUbG6vZs2erf//+Gj58uCSpX79+GjFihKZOnapnn31WknTXXXcpMzNTffv2lSSlp6fr0ksvld/v1xNPPKH9+/dr9uzZmjp1KldqAACApDMInU8//VQ//elP3cczZ86UJE2aNElLly7VnDlzdPjwYU2bNk3V1dUaOHCgVq5cqaioKPc5Tz31lDp16qTbbrtNhw8f1vXXX6+lS5eqY8eO7syyZcs0Y8YM99NZo0ePDvndPR07dtS7776radOm6ZprrlFERIQmTJig//qv/2r5nwIAALDSWf0enfaO36ODVnUefGvxe3TA79GBjdrs9+gAAACcTwgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1znnozJs3Tx6PJ2RJTEx0txtjNG/ePPl8PkVERGjYsGHatGlTyD6CwaCmT5+uuLg4RUZGavTo0dq1a1fITHV1tfx+vxzHkeM48vv9OnDgwLk+HQAA0I61yhWdf/7nf1ZFRYW7fPnll+62xx9/XE8++aSWLFmiDRs2KDExUTfccIMOHjzozmRnZys3N1c5OTkqKChQbW2tMjMz1djY6M5MmDBBJSUlysvLU15enkpKSuT3+1vjdAAAQDvVqVV22qlTyFWcY4wxevrpp/XQQw9p7NixkqQXX3xRCQkJeuWVV/TLX/5SgUBAzz//vF5++WUNHz5ckvSnP/1JycnJev/995WRkaHS0lLl5eWpqKhIAwcOlCT94Q9/UFpamrZu3aq+ffu2xmkBAFrqFU9bHwHa2gTTpl++Va7obNu2TT6fTz179tTPf/5z/e1vf5Mk7dixQ5WVlUpPT3dnvV6vhg4dqrVr10qSiouL1dDQEDLj8/mUkpLizhQWFspxHDdyJGnQoEFyHMedAQAAOOdXdAYOHKiXXnpJffr00Z49e/Sb3/xGgwcP1qZNm1RZWSlJSkhICHlOQkKCdu7cKUmqrKxUeHi4YmJims0ce35lZaXi4+Obfe34+Hh35kSCwaCCwaD7uKam5sxOEgAAtAvnPHRuvPFG97/79++vtLQ0XXLJJXrxxRc1aNAgSZLHE3op0xjTbN3xjp850fyp9rNw4ULNnz//tM4DAAC0f63+8fLIyEj1799f27Ztc+/bOf6qS1VVlXuVJzExUfX19aqurv7BmT179jT7Wnv37m12tej75s6dq0Ag4C7l5eVndW4AAOD81uqhEwwGVVpaqqSkJPXs2VOJiYnKz893t9fX12vNmjUaPHiwJCk1NVVhYWEhMxUVFdq4caM7k5aWpkAgoPXr17sz69atUyAQcGdOxOv1Kjo6OmQBAAD2Ouc/upo9e7ZGjRql7t27q6qqSr/5zW9UU1OjSZMmyePxKDs7WwsWLFDv3r3Vu3dvLViwQBdddJEmTJggSXIcR1OmTNGsWbPUtWtXxcbGavbs2erfv7/7Kax+/fppxIgRmjp1qp599llJ0l133aXMzEw+cQUAAFznPHR27dql8ePH69tvv9XFF1+sQYMGqaioSD169JAkzZkzR4cPH9a0adNUXV2tgQMHauXKlYqKinL38dRTT6lTp0667bbbdPjwYV1//fVaunSpOnbs6M4sW7ZMM2bMcD+dNXr0aC1ZsuRcnw4AAGjHPMaYtv2AexuqqamR4zgKBAKt82OsU9xgDcudB99anvm8Bi905tE2fh3ye3TQCr9HpyXv3/xbVwAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwVrsPnf/+7/9Wz5491blzZ6Wmpurjjz9u60MCAADniXYdOq+99pqys7P10EMP6fPPP9dPfvIT3XjjjSorK2vrQwMAAOeBdh06Tz75pKZMmaI777xT/fr109NPP63k5GT9/ve/b+tDAwAA54FObX0AZ6q+vl7FxcX6j//4j5D16enpWrt27QmfEwwGFQwG3ceBQECSVFNT03oHigvX+fC6OtLWB4C21uZ/vx1q2y+P80ArvAaPva6NMaecbbeh8+2336qxsVEJCQkh6xMSElRZWXnC5yxcuFDz589vtj45OblVjhEXOMdp6yMA5CzidYg2NrX1XoMHDx6Uc4q/a9tt6Bzj8XhCHhtjmq07Zu7cuZo5c6b7uKmpSfv371fXrl1P+hycmZqaGiUnJ6u8vFzR0dFtfTi4APEaRFvjNdh6jDE6ePCgfD7fKWfbbejExcWpY8eOza7eVFVVNbvKc4zX65XX6w1Z96Mf/ai1DhGSoqOj+QZHm+I1iLbGa7B1nOpKzjHt9mbk8PBwpaamKj8/P2R9fn6+Bg8e3EZHBQAAzift9oqOJM2cOVN+v18DBgxQWlqannvuOZWVlenuu+9u60MDAADngXYdOuPGjdO+ffv061//WhUVFUpJSdHy5cvVo0ePtj60C57X69Wjjz7a7EeFwN8Lr0G0NV6D5wePOZ3PZgEAALRD7fYeHQAAgFMhdAAAgLUIHQAAYC1CB393S5cuPSe/v8jj8eitt9466/2gfZg8ebLGjBlzTvf59ddfy+PxqKSk5JzuF+3LsGHDlJ2dLUn68Y9/rKeffrpNj+dMtcb3iA3a9aeu0D6NGzdON910U1sfBtqZ3/72t6f179oAZ2PDhg2KjIxs68PAOUTooFXU19crPDy82fqGhgZFREQoIiKiDY4K7dnp/hZU4GxcfPHFrbp/Y4waGxvVqRNvv38v/OjqAjRs2DBNnz5d2dnZiomJUUJCgp577jnV1dXp3/7t3xQVFaVLLrlE7733niSpsbFRU6ZMUc+ePRUREaG+ffvqt7/9bcg+j10yXbhwoXw+n/r06eP+WOD111/XsGHD1LlzZ/3pT3864Y+u/vKXvyg1NVWdO3fWP/7jP2r+/Pk6evSou33btm269tpr1blzZ1166aXNfiM27PG///u/6t+/vyIiItS1a1cNHz5cdXV1zS7LDxs2TDNmzNCcOXMUGxurxMREzZs3L2RfW7Zs0ZAhQ9zXzfvvv3/KH3lu3rxZN910k7p06aKEhAT5/X59++23rXOy+Lurq6vT7bffri5duigpKUmLFy8O2f79H12NHz9eP//5z0O2NzQ0KC4uTi+88IIkKRgMasaMGYqPj1fnzp01ZMgQbdiwwZ1fvXq1PB6PVqxYoQEDBsjr9erjjz9WU1OTHnvsMfXq1Uter1fdu3fXf/7nf7rP2717t8aNG6eYmBh17dpVN998s77++mt3e2Njo2bOnKkf/ehH6tq1q+bMmcMVz5MgdC5QL774ouLi4rR+/XpNnz5d99xzj2699VYNHjxYn332mTIyMuT3+3Xo0CE1NTWpW7duev3117V582Y98sgjevDBB/X666+H7PODDz5QaWmp8vPz9c4777jrH3jgAc2YMUOlpaXKyMhodiwrVqzQL37xC82YMUObN2/Ws88+q6VLl7rf9E1NTRo7dqw6duyooqIiPfPMM3rggQda9w8IbaKiokLjx4/XHXfcodLSUq1evVpjx4496V/gL774oiIjI7Vu3To9/vjj+vWvf+1GcFNTk8aMGaOLLrpI69at03PPPaeHHnrolF9/6NChuuKKK/Tpp58qLy9Pe/bs0W233XbOzxVt4/7779eqVauUm5urlStXavXq1SouLj7h7MSJE/X222+rtrbWXbdixQrV1dXplltukSTNmTNHb7zxhl588UV99tln6tWrlzIyMrR///6Qfc2ZM0cLFy5UaWmpLrvsMs2dO1ePPfaYHn74YW3evFmvvPKK++80Hjp0SD/96U/VpUsXffTRRyooKFCXLl00YsQI1dfXS5IWL16s//mf/9Hzzz+vgoIC7d+/X7m5ua3xR9b+GVxwhg4daoYMGeI+Pnr0qImMjDR+v99dV1FRYSSZwsLCE+5j2rRp5pZbbnEfT5o0ySQkJJhgMOiu27Fjh5Fknn766ZDnvvDCC8ZxHPfxT37yE7NgwYKQmZdfftkkJSUZY4xZsWKF6dixoykvL3e3v/fee0aSyc3NPf0Tx3mvuLjYSDJff/11s22TJk0yN998s/v4+NexMcZcddVV5oEHHjDGfPca6dSpk6moqHC35+fnh7xujr1GP//8c2OMMQ8//LBJT08P2Wd5ebmRZLZu3XoOzhBt6eDBgyY8PNzk5OS46/bt22ciIiLMfffdZ4wxpkePHuapp54yxhhTX19v4uLizEsvveTOjx8/3tx6663GGGNqa2tNWFiYWbZsmbu9vr7e+Hw+8/jjjxtjjFm1apWRZN566y13pqamxni9XvOHP/zhhMf5/PPPm759+5qmpiZ3XTAYNBEREWbFihXGGGOSkpLMokWL3O0NDQ2mW7duId8j+A4/JLxAXXbZZe5/d+zYUV27dlX//v3ddcf+z6KqqkqS9Mwzz+iPf/yjdu7cqcOHD6u+vl5XXHFFyD779+9/wvtyBgwY8IPHUlxcrA0bNoRctm1sbNSRI0d06NAhlZaWqnv37urWrZu7PS0t7fRPFu3G5Zdfruuvv179+/dXRkaG0tPT9a//+q+KiYk54fz3X8eSlJSU5L5mt27dquTkZCUmJrrbr7766h/8+sXFxVq1apW6dOnSbNtXX32lPn36tPSUcB756quvVF9fH/L3R2xsrPr27XvC+bCwMN16661atmyZ/H6/6urq9Oc//1mvvPKKu7+GhgZdc801Ic+5+uqrVVpaGrKv7/89WFpaqmAwqOuvv/6EX7e4uFjbt29XVFRUyPojR47oq6++UiAQUEVFRch5dOrUSQMGDODHVydA6FygwsLCQh57PJ6QdR6PR9J3l/9ff/11/fu//7sWL16stLQ0RUVF6YknntC6detC9nGyTyqc6hMMTU1Nmj9/vsaOHdtsW+fOnU/4jXvs+GCXjh07Kj8/X2vXrtXKlSv1u9/9Tg899FCz19oxJ3odNzU1Sfrups+Wvk6ampo0atQoPfbYY822JSUltWhfOP+cSQRMnDhRQ4cOVVVVlfLz89W5c2fdeOONIfs7/nV2otfe9/8ePNWHMZqampSamqply5Y129baN0vbiHt0cEoff/yxBg8erGnTpulf/uVf1KtXL3311VfnbP9XXnmltm7dql69ejVbOnTooEsvvVRlZWX65ptv3OcUFhaes6+P84vH49E111yj+fPn6/PPP1d4ePgZ3XvwT//0TyorK9OePXvcdd+/SfRErrzySm3atEk//vGPm70W+chx+9erVy+FhYWpqKjIXVddXa2//vWvJ33O4MGDlZycrNdee03Lli3Trbfe6l657tWrl8LDw1VQUODONzQ06NNPP1W/fv1Ous/evXsrIiJCH3zwwQm3X3nlldq2bZvi4+ObvQ4dx5HjOEpKSgo5j6NHj570XqMLHaGDU+rVq5c+/fRTrVixQn/961/18MMPn/INoyUeeeQRvfTSS5o3b542bdqk0tJSvfbaa/rVr34lSRo+fLj69u2r22+/Xf/3f/+njz/++JQ3laJ9WrdunRYsWKBPP/1UZWVlevPNN7V3794ffNM4mRtuuEGXXHKJJk2apC+++EKffPKJ+7o52ZWee++9V/v379f48eO1fv16/e1vf9PKlSt1xx13qLGx8azODW2vS5cumjJliu6//3598MEH2rhxoyZPnqwOHU7+VujxeDRhwgQ988wzys/P1y9+8Qt3W2RkpO655x7df//9ysvL0+bNmzV16lQdOnRIU6ZMOek+O3furAceeEBz5szRSy+9pK+++kpFRUV6/vnnJX13FSkuLk4333yzPv74Y+3YsUNr1qzRfffdp127dkmS7rvvPi1atEi5ubnasmWLpk2bpgMHDpybPyjLEDo4pbvvvltjx47VuHHjNHDgQO3bt0/Tpk07Z/vPyMjQO++8o/z8fF111VUaNGiQnnzySfXo0UOS1KFDB+Xm5ioYDOrqq6/WnXfeGXI/D+wRHR2tjz76SDfddJP69OmjX/3qV1q8eLH7o4KW6Nixo9566y3V1tbqqquu0p133unGc+fOnU/4HJ/Pp08++USNjY3KyMhQSkqK7rvvPjmO84Nvhmg/nnjiCV177bUaPXq0hg8friFDhig1NfUHnzNx4kRt3rxZ//AP/xByP44kLVq0SLfccov8fr+uvPJKbd++XStWrDjpfWXHPPzww5o1a5YeeeQR9evXT+PGjXPvL7vooov00UcfqXv37ho7dqz69eunO+64Q4cPH1Z0dLQkadasWbr99ts1efJk95aCn/3sZ2fxJ2Mvj+HOJQAXiE8++URDhgzR9u3bdckll7T14QD4OyB0AFgrNzdXXbp0Ue/evbV9+3bdd999iomJCbmnAoDd+NQVAGsdPHhQc+bMUXl5ueLi4jR8+PBmvwkXgN24ogMAAKzF3XUAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWv8PdxA9gioGfsgAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.bar(list(bank['marital'].value_counts().keys()),list(bank['marital'].value_counts().values),color=[\"red\",\"green\",\"orange\"])\n",
"plt.show() "
]
},
{
"cell_type": "code",
"execution_count": 64,
"id": "bfae85b3",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>age</th>\n",
" <th>job</th>\n",
" <th>marital</th>\n",
" <th>education</th>\n",
" <th>default</th>\n",
" <th>balance</th>\n",
" <th>housing</th>\n",
" <th>loan</th>\n",
" <th>contact</th>\n",
" <th>day</th>\n",
" <th>month</th>\n",
" <th>duration</th>\n",
" <th>campaign</th>\n",
" <th>pdays</th>\n",
" <th>previous</th>\n",
" <th>poutcome</th>\n",
" <th>Target</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>58</td>\n",
" <td>management</td>\n",
" <td>married</td>\n",
" <td>tertiary</td>\n",
" <td>no</td>\n",
" <td>2143</td>\n",
" <td>yes</td>\n",
" <td>no</td>\n",
" <td>unknown</td>\n",
" <td>5</td>\n",
" <td>may</td>\n",
" <td>261</td>\n",
" <td>1</td>\n",
" <td>-1</td>\n",
" <td>0</td>\n",
" <td>unknown</td>\n",
" <td>no</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>44</td>\n",
" <td>technician</td>\n",
" <td>single</td>\n",
" <td>secondary</td>\n",
" <td>no</td>\n",
" <td>29</td>\n",
" <td>yes</td>\n",
" <td>no</td>\n",
" <td>unknown</td>\n",
" <td>5</td>\n",
" <td>may</td>\n",
" <td>151</td>\n",
" <td>1</td>\n",
" <td>-1</td>\n",
" <td>0</td>\n",
" <td>unknown</td>\n",
" <td>no</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>33</td>\n",
" <td>entrepreneur</td>\n",
" <td>married</td>\n",
" <td>secondary</td>\n",
" <td>no</td>\n",
" <td>2</td>\n",
" <td>yes</td>\n",
" <td>yes</td>\n",
" <td>unknown</td>\n",
" <td>5</td>\n",
" <td>may</td>\n",
" <td>76</td>\n",
" <td>1</td>\n",
" <td>-1</td>\n",
" <td>0</td>\n",
" <td>unknown</td>\n",
" <td>no</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>47</td>\n",
" <td>blue-collar</td>\n",
" <td>married</td>\n",
" <td>unknown</td>\n",
" <td>no</td>\n",
" <td>1506</td>\n",
" <td>yes</td>\n",
" <td>no</td>\n",
" <td>unknown</td>\n",
" <td>5</td>\n",
" <td>may</td>\n",
" <td>92</td>\n",
" <td>1</td>\n",
" <td>-1</td>\n",
" <td>0</td>\n",
" <td>unknown</td>\n",
" <td>no</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>33</td>\n",
" <td>unknown</td>\n",
" <td>single</td>\n",
" <td>unknown</td>\n",
" <td>no</td>\n",
" <td>1</td>\n",
" <td>no</td>\n",
" <td>no</td>\n",
" <td>unknown</td>\n",
" <td>5</td>\n",
" <td>may</td>\n",
" <td>198</td>\n",
" <td>1</td>\n",
" <td>-1</td>\n",
" <td>0</td>\n",
" <td>unknown</td>\n",
" <td>no</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" age job marital education default balance housing loan \\\n",
"0 58 management married tertiary no 2143 yes no \n",
"1 44 technician single secondary no 29 yes no \n",
"2 33 entrepreneur married secondary no 2 yes yes \n",
"3 47 blue-collar married unknown no 1506 yes no \n",
"4 33 unknown single unknown no 1 no no \n",
"\n",
" contact day month duration campaign pdays previous poutcome Target \n",
"0 unknown 5 may 261 1 -1 0 unknown no \n",
"1 unknown 5 may 151 1 -1 0 unknown no \n",
"2 unknown 5 may 76 1 -1 0 unknown no \n",
"3 unknown 5 may 92 1 -1 0 unknown no \n",
"4 unknown 5 may 198 1 -1 0 unknown no "
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bank.head()"
]
},
{
"cell_type": "code",
"execution_count": 67,
"id": "27129abc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"secondary 23202\n",
"tertiary 13301\n",
"primary 6851\n",
"unknown 1857\n",
"Name: education, dtype: int64"
]
},
"execution_count": 67,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bank['education'].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 68,
"id": "1454f97c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['secondary', 'tertiary', 'primary', 'unknown'], dtype='object')"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bank['education'].value_counts().keys()"
]
},
{
"cell_type": "code",
"execution_count": 69,
"id": "afe207fc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([23202, 13301, 6851, 1857], dtype=int64)"
]
},
"execution_count": 69,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bank['education'].value_counts().values"
]
},
{
"cell_type": "code",
"execution_count": 71,
"id": "a965b5cd",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAGdCAYAAAAbudkLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAr2klEQVR4nO3de1iUdf7/8deIQIgwCQjISqLrIQzSsu96qIRMIRXN3G8nXdJvRvUtNdZD+3W3flrbSmUe2mxLbcPWVLYrs93KWO3gEUWjuEpFo9RAhTDFQc3A8PP7o8t7GyEFk0U+Ph/XNdfl3POee+6ZG2ae3jOAyxhjBAAAYKFmjb0BAAAADYXQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGCt5o29AY3p5MmT2r9/v4KCguRyuRp7cwAAQB0YY3TkyBFFRUWpWbMzH7O5qENn//79io6ObuzNAAAA56C4uFht27Y948xFHTpBQUGSfniggoODG3lrAABAXVRUVCg6Otp5HT+Tizp0Tr1dFRwcTOgAANDE1OVjJ3wYGQAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1mre2Btgt7P/+Xg0FNPYGwAAuABwRAcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgrXqFTkZGhv7rv/5LQUFBCg8P17Bhw7Rz506vGWOMpk2bpqioKAUEBCgxMVHbtm3zmqmsrNS4ceMUFhamwMBADR06VHv37vWaKS8vV2pqqtxut9xut1JTU3X48GGvmaKiIg0ZMkSBgYEKCwvT+PHjVVVVVZ+7BAAALFav0FmzZo0efPBBbdq0SatWrdL333+vpKQkHTt2zJl5+umnNWvWLM2dO1dbtmxRZGSkBgwYoCNHjjgz6enpWr58ubKysrR+/XodPXpUKSkpqq6udmZGjBih/Px8ZWdnKzs7W/n5+UpNTXUur66u1uDBg3Xs2DGtX79eWVlZWrZsmSZOnPhzHg8AAGAT8zOUlZUZSWbNmjXGGGNOnjxpIiMjzZNPPunMfPfdd8btdpsXX3zRGGPM4cOHja+vr8nKynJm9u3bZ5o1a2ays7ONMcZs377dSDKbNm1yZjZu3GgkmR07dhhjjFmxYoVp1qyZ2bdvnzOzdOlS4+/vbzweT5223+PxGEl1nq8/cWq0EwDAVvV5/f5Zn9HxeDySpJCQEEnS7t27VVpaqqSkJGfG399fCQkJysnJkSTl5eXpxIkTXjNRUVGKi4tzZjZu3Ci3262ePXs6M7169ZLb7faaiYuLU1RUlDOTnJysyspK5eXl1bq9lZWVqqio8DoBAAB7nXPoGGM0YcIEXXfddYqLi5MklZaWSpIiIiK8ZiMiIpzLSktL5efnp1atWp1xJjw8vMZthoeHe82cfjutWrWSn5+fM3O6jIwM5zM/brdb0dHR9b3bAACgCTnn0Bk7dqw+/fRTLV26tMZlLpfL67wxpsay050+U9v8ucz82JQpU+TxeJxTcXHxGbcJAAA0becUOuPGjdM///lPffjhh2rbtq2zPDIyUpJqHFEpKytzjr5ERkaqqqpK5eXlZ5z5+uuva9zugQMHvGZOv53y8nKdOHGixpGeU/z9/RUcHOx1AgAA9qpX6BhjNHbsWL3xxhv64IMP1L59e6/L27dvr8jISK1atcpZVlVVpTVr1qhPnz6SpB49esjX19drpqSkRFu3bnVmevfuLY/Ho82bNzszubm58ng8XjNbt25VSUmJM7Ny5Ur5+/urR48e9blbAADAUi5jjKnr8AMPPKAlS5boH//4h7p06eIsd7vdCggIkCQ99dRTysjIUGZmpjp16qTp06dr9erV2rlzp4KCgiRJ//u//6u3335bCxcuVEhIiCZNmqSDBw8qLy9PPj4+kqSBAwdq//79mjdvniTp3nvvVbt27fTWW29J+uHHy7t3766IiAjNmDFDhw4d0ujRozVs2DA999xzdbo/FRUVcrvd8ng8DXR058xv16Eh1fnLGgDQxNTr9bs+P86lH149apwyMzOdmZMnT5qpU6eayMhI4+/vb/r27Ws+++wzr/UcP37cjB071oSEhJiAgACTkpJiioqKvGYOHjxoRo4caYKCgkxQUJAZOXKkKS8v95r56quvzODBg01AQIAJCQkxY8eONd99912d7w8/Xm7zCQBgq/q8ftfriI5tOKJjs4v2yxoArFef12/+1hUAALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsFa9Q2ft2rUaMmSIoqKi5HK59Oabb3pdPnr0aLlcLq9Tr169vGYqKys1btw4hYWFKTAwUEOHDtXevXu9ZsrLy5Wamiq32y23263U1FQdPnzYa6aoqEhDhgxRYGCgwsLCNH78eFVVVdX3LgEAAEvVO3SOHTumbt26ae7cuT85c9NNN6mkpMQ5rVixwuvy9PR0LV++XFlZWVq/fr2OHj2qlJQUVVdXOzMjRoxQfn6+srOzlZ2drfz8fKWmpjqXV1dXa/DgwTp27JjWr1+vrKwsLVu2TBMnTqzvXQIAALYyP4Mks3z5cq9lo0aNMjfffPNPXufw4cPG19fXZGVlOcv27dtnmjVrZrKzs40xxmzfvt1IMps2bXJmNm7caCSZHTt2GGOMWbFihWnWrJnZt2+fM7N06VLj7+9vPB5Pnbbf4/EYSXWerz9xarQTAMBW9Xn9bpDP6KxevVrh4eHq3Lmz0tLSVFZW5lyWl5enEydOKCkpyVkWFRWluLg45eTkSJI2btwot9utnj17OjO9evWS2+32momLi1NUVJQzk5ycrMrKSuXl5dW6XZWVlaqoqPA6AQAAe5330Bk4cKAWL16sDz74QDNnztSWLVvUr18/VVZWSpJKS0vl5+enVq1aeV0vIiJCpaWlzkx4eHiNdYeHh3vNREREeF3eqlUr+fn5OTOny8jIcD7z43a7FR0d/bPvLwAAuHA1P98rvP32251/x8XF6ZprrlG7du30zjvvaPjw4T95PWOMXC6Xc/7H//45Mz82ZcoUTZgwwTlfUVFB7AAAYLEG//HyNm3aqF27diosLJQkRUZGqqqqSuXl5V5zZWVlzhGayMhIff311zXWdeDAAa+Z04/clJeX68SJEzWO9Jzi7++v4OBgrxMAALBXg4fOwYMHVVxcrDZt2kiSevToIV9fX61atcqZKSkp0datW9WnTx9JUu/eveXxeLR582ZnJjc3Vx6Px2tm69atKikpcWZWrlwpf39/9ejRo6HvFgAAaALq/dbV0aNH9cUXXzjnd+/erfz8fIWEhCgkJETTpk3Tr3/9a7Vp00Z79uzR73//e4WFhemWW26RJLndbo0ZM0YTJ05UaGioQkJCNGnSJMXHx6t///6SpNjYWN10001KS0vTvHnzJEn33nuvUlJS1KVLF0lSUlKSunbtqtTUVM2YMUOHDh3SpEmTlJaWxpEaAADwg/r+SNeHH35oJNU4jRo1ynz77bcmKSnJtG7d2vj6+prLLrvMjBo1yhQVFXmt4/jx42bs2LEmJCTEBAQEmJSUlBozBw8eNCNHjjRBQUEmKCjIjBw50pSXl3vNfPXVV2bw4MEmICDAhISEmLFjx5rvvvuuzveFHy+3+QQAsFV9Xr9dxhjTiJ3VqCoqKuR2u+XxeBroKFDtH4rGf8JF+2UNANarz+s3f+sKAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANZq3tgbADQ1rsdcjb0JFy0z1TT2JgBoYjiiAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxV79BZu3athgwZoqioKLlcLr355ptelxtjNG3aNEVFRSkgIECJiYnatm2b10xlZaXGjRunsLAwBQYGaujQodq7d6/XTHl5uVJTU+V2u+V2u5WamqrDhw97zRQVFWnIkCEKDAxUWFiYxo8fr6qqqvreJQAAYKl6h86xY8fUrVs3zZ07t9bLn376ac2aNUtz587Vli1bFBkZqQEDBujIkSPOTHp6upYvX66srCytX79eR48eVUpKiqqrq52ZESNGKD8/X9nZ2crOzlZ+fr5SU1Ody6urqzV48GAdO3ZM69evV1ZWlpYtW6aJEyfW9y4BAABLuYwx5pyv7HJp+fLlGjZsmKQfjuZERUUpPT1dv/vd7yT9cPQmIiJCTz31lO677z55PB61bt1aixYt0u233y5J2r9/v6Kjo7VixQolJyeroKBAXbt21aZNm9SzZ09J0qZNm9S7d2/t2LFDXbp00bvvvquUlBQVFxcrKipKkpSVlaXRo0errKxMwcHBZ93+iooKud1ueTyeOs2fwyPUAOtE3Zzzl/VZuR5jvzYWM7Xh9iuApqM+r9/n9TM6u3fvVmlpqZKSkpxl/v7+SkhIUE5OjiQpLy9PJ06c8JqJiopSXFycM7Nx40a53W4nciSpV69ecrvdXjNxcXFO5EhScnKyKisrlZeXdz7vFgAAaKKan8+VlZaWSpIiIiK8lkdEROirr75yZvz8/NSqVasaM6euX1paqvDw8BrrDw8P95o5/XZatWolPz8/Z+Z0lZWVqqysdM5XVFTU5+4BAIAmpkF+6srl8j60b4ypsex0p8/UNn8uMz+WkZHhfLjZ7XYrOjr6jNsEAACatvMaOpGRkZJU44hKWVmZc/QlMjJSVVVVKi8vP+PM119/XWP9Bw4c8Jo5/XbKy8t14sSJGkd6TpkyZYo8Ho9zKi4uPod7CQAAmorzGjrt27dXZGSkVq1a5SyrqqrSmjVr1KdPH0lSjx495Ovr6zVTUlKirVu3OjO9e/eWx+PR5s2bnZnc3Fx5PB6vma1bt6qkpMSZWblypfz9/dWjR49at8/f31/BwcFeJwAAYK96f0bn6NGj+uKLL5zzu3fvVn5+vkJCQnTZZZcpPT1d06dPV6dOndSpUydNnz5dLVq00IgRIyRJbrdbY8aM0cSJExUaGqqQkBBNmjRJ8fHx6t+/vyQpNjZWN910k9LS0jRv3jxJ0r333quUlBR16dJFkpSUlKSuXbsqNTVVM2bM0KFDhzRp0iSlpaURMAAAQNI5hM5HH32kG264wTk/YcIESdKoUaO0cOFCPfzwwzp+/LgeeOABlZeXq2fPnlq5cqWCgoKc68yePVvNmzfXbbfdpuPHj+vGG2/UwoUL5ePj48wsXrxY48ePd346a+jQoV6/u8fHx0fvvPOOHnjgAV177bUKCAjQiBEj9Mwzz9T/UQAAAFb6Wb9Hp6nj9+jYjN+jYyN+jw4AqRF/jw4AAMCFhNABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFireWNvAABcMJa4GnsLLl4jTGNvASzFER0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWInQAAIC1CB0AAGAtQgcAAFiL0AEAANYidAAAgLUIHQAAYC1CBwAAWIvQAQAA1iJ0AACAtQgdAABgLUIHAABYi9ABAADWOu+hM23aNLlcLq9TZGSkc7kxRtOmTVNUVJQCAgKUmJiobdu2ea2jsrJS48aNU1hYmAIDAzV06FDt3bvXa6a8vFypqalyu91yu91KTU3V4cOHz/fdAQAATViDHNG54oorVFJS4pw+++wz57Knn35as2bN0ty5c7VlyxZFRkZqwIABOnLkiDOTnp6u5cuXKysrS+vXr9fRo0eVkpKi6upqZ2bEiBHKz89Xdna2srOzlZ+fr9TU1Ia4OwAAoIlq3iArbd7c6yjOKcYYzZkzR3/4wx80fPhwSdIrr7yiiIgILVmyRPfdd588Ho/++te/atGiRerfv78k6dVXX1V0dLTee+89JScnq6CgQNnZ2dq0aZN69uwpSVqwYIF69+6tnTt3qkuXLg1xtwAAQBPTIEd0CgsLFRUVpfbt2+uOO+7Qrl27JEm7d+9WaWmpkpKSnFl/f38lJCQoJydHkpSXl6cTJ054zURFRSkuLs6Z2bhxo9xutxM5ktSrVy+53W5npjaVlZWqqKjwOgEAAHud99Dp2bOn/va3v+lf//qXFixYoNLSUvXp00cHDx5UaWmpJCkiIsLrOhEREc5lpaWl8vPzU6tWrc44Ex4eXuO2w8PDnZnaZGRkOJ/pcbvdio6O/ln3FQAAXNjOe+gMHDhQv/71rxUfH6/+/fvrnXfekfTDW1SnuFwur+sYY2osO93pM7XNn209U6ZMkcfjcU7FxcV1uk8AAKBpavAfLw8MDFR8fLwKCwudz+2cftSlrKzMOcoTGRmpqqoqlZeXn3Hm66+/rnFbBw4cqHG06Mf8/f0VHBzsdQIAAPZq8NCprKxUQUGB2rRpo/bt2ysyMlKrVq1yLq+qqtKaNWvUp08fSVKPHj3k6+vrNVNSUqKtW7c6M71795bH49HmzZudmdzcXHk8HmcGAADgvP/U1aRJkzRkyBBddtllKisr0xNPPKGKigqNGjVKLpdL6enpmj59ujp16qROnTpp+vTpatGihUaMGCFJcrvdGjNmjCZOnKjQ0FCFhIRo0qRJzlthkhQbG6ubbrpJaWlpmjdvniTp3nvvVUpKCj9xBQAAHOc9dPbu3as777xT33zzjVq3bq1evXpp06ZNateunSTp4Ycf1vHjx/XAAw+ovLxcPXv21MqVKxUUFOSsY/bs2WrevLluu+02HT9+XDfeeKMWLlwoHx8fZ2bx4sUaP36889NZQ4cO1dy5c8/33QEAAE2YyxhjGnsjGktFRYXcbrc8Hk8DfV7nzB+wRkNquC9r12Ps18Zipjbw09US9m2jGXHRvhThHNTn9Zu/dQUAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArNW8sTcAAIAG53I19hZcvIxp1JvniA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsBahAwAArEXoAAAAaxE6AADAWoQOAACwFqEDAACsRegAAABrNfnQ+ctf/qL27dvrkksuUY8ePbRu3brG3iQAAHCBaNKh8/e//13p6en6wx/+oE8++UTXX3+9Bg4cqKKiosbeNAAAcAFo0qEza9YsjRkzRvfcc49iY2M1Z84cRUdH64UXXmjsTQMAABeA5o29AeeqqqpKeXl5+r//+z+v5UlJScrJyan1OpWVlaqsrHTOezweSVJFRUXDbSgaSQPu0+8abtU4swb/Xv22YVePM+B52F4NsG9PPRcYY84622RD55tvvlF1dbUiIiK8lkdERKi0tLTW62RkZOixxx6rsTw6OrpBthGNyd3YG4AG4H6S/WqtNPattdwNt2+PHDki91nW32RD5xSXy+V13hhTY9kpU6ZM0YQJE5zzJ0+e1KFDhxQaGvqT17kYVVRUKDo6WsXFxQoODm7szcF5xL61E/vVXuzb2hljdOTIEUVFRZ11tsmGTlhYmHx8fGocvSkrK6txlOcUf39/+fv7ey279NJLG2oTm7zg4GC+sSzFvrUT+9Ve7NuaznYk55Qm+2FkPz8/9ejRQ6tWrfJavmrVKvXp06eRtgoAAFxImuwRHUmaMGGCUlNTdc0116h3796aP3++ioqKdP/99zf2pgEAgAtAkw6d22+/XQcPHtTjjz+ukpISxcXFacWKFWrXrl1jb1qT5u/vr6lTp9Z4mw9NH/vWTuxXe7Fvfz6XqcvPZgEAADRBTfYzOgAAAGdD6AAAAGsROgAAwFqEDn6W1atXy+Vy6fDhw429KaiDadOmqXv37o29GTiLPXv2yOVyKT8/v7E3BecRz5eNg9ABLiCJiYlKT08/L+tyuVx68803vZZNmjRJ77///nlZPxpOdHS085OkAH4eQgeNrqqqqrE3wSpnejxbtmyp0NDQn7X+EydO/Kzr48yqqqrk4+OjyMhINW/+n/8NIOxf2IbQucC8/vrrio+PV0BAgEJDQ9W/f38dO3ZMkpSZmanY2Fhdcskluvzyy/WXv/zF67p79+7VHXfcoZCQEAUGBuqaa65Rbm6uc/kLL7ygX/7yl/Lz81OXLl20aNEir+u7XC699NJLuuWWW9SiRQt16tRJ//znP71mVqxYoc6dOysgIEA33HCD9uzZ43X5wYMHdeedd6pt27Zq0aKF4uPjtXTpUq+ZxMREjR07VhMmTFBYWJgGDBigu+++WykpKV5z33//vSIjI/Xyyy+f02PZ1IwePVpr1qzRs88+K5fLJZfLpT179mj79u0aNGiQWrZsqYiICKWmpuqbb75xrlfb4xkTEyNJuuWWW+RyuZzzp791tWXLFg0YMEBhYWFyu91KSEjQxx9/7LVdLpdLL774om6++WYFBgbqiSeeUMeOHfXMM894zW3dulXNmjXTl19+2SCPT1N1av+MHTtWl156qUJDQ/XII484f3U5JiZGTzzxhEaPHi232620tLQab12desvjX//6l6666ioFBASoX79+Kisr07vvvqvY2FgFBwfrzjvv1Lff/vtPsGdnZ+u6665zbjclJcVr/5y6nddee02JiYm65JJLNH/+fAUHB+v111/3uh9vvfWWAgMDdeTIkYZ/0C5QMTExmjNnjtey7t27a9q0aZLq9hz6Y8ePH9fgwYPVq1cvHTp0yNkfb7zxhm644Qa1aNFC3bp108aNG72ut2zZMl1xxRXy9/dXTEyMZs6c6Vz23HPPKT4+3jn/5ptvyuVy6fnnn3eWJScna8qUKZL+/ZywaNEixcTEyO1264477rBrPxtcMPbv32+aN29uZs2aZXbv3m0+/fRT8/zzz5sjR46Y+fPnmzZt2phly5aZXbt2mWXLlpmQkBCzcOFCY4wxR44cMR06dDDXX3+9WbdunSksLDR///vfTU5OjjHGmDfeeMP4+vqa559/3uzcudPMnDnT+Pj4mA8++MC5fUmmbdu2ZsmSJaawsNCMHz/etGzZ0hw8eNAYY0xRUZHx9/c3Dz30kNmxY4d59dVXTUREhJFkysvLjTHG7N2718yYMcN88skn5ssvvzR//vOfjY+Pj9m0aZNzOwkJCaZly5Zm8uTJZseOHaagoMBs2LDB+Pj4mP379ztz//jHP0xgYKA5cuRIQz/0F4TDhw+b3r17m7S0NFNSUmJKSkrM3r17TVhYmJkyZYopKCgwH3/8sRkwYIC54YYbnOvV9niWlZUZSSYzM9OUlJSYsrIyY4wxU6dONd26dXOu+/7775tFixaZ7du3m+3bt5sxY8aYiIgIU1FR4cxIMuHh4eavf/2r+fLLL82ePXvMn/70J9O1a1ev7f/tb39r+vbt27APUhN0av/8+PumRYsWZv78+cYYY9q1a2eCg4PNjBkzTGFhoSksLDS7d+82kswnn3xijDHmww8/NJJMr169zPr1683HH39sOnbsaBISEkxSUpL5+OOPzdq1a01oaKh58sknndt+/fXXzbJly8znn39uPvnkEzNkyBATHx9vqqurjTHGuZ2YmBjnuWXfvn0mLS3NDBo0yOt+3HLLLeauu+76zzxoF6h27dqZ2bNney3r1q2bmTp1qjHm7M+hp/ZjeXm5OXz4sLnuuutM//79zdGjR40x/94fl19+uXn77bfNzp07zX//93+bdu3amRMnThhjjPnoo49Ms2bNzOOPP2527txpMjMzTUBAgMnMzDTGGPPpp58al8tlDhw4YIwxJj093YSFhZlbb73VGGPMiRMnTMuWLc27775rjPnhOaFly5Zm+PDh5rPPPjNr1641kZGR5ve//31DPpT/UYTOBSQvL89IMnv27KlxWXR0tFmyZInXsj/+8Y+md+/exhhj5s2bZ4KCgpxvqNP16dPHpKWleS279dZbvZ7MJJlHHnnEOX/06FHjcrmcb4gpU6aY2NhYc/LkSWfmd7/7nVfo1GbQoEFm4sSJzvmEhATTvXv3GnNdu3Y1Tz31lHN+2LBhZvTo0T+5XhslJCSYhx56yDn/6KOPmqSkJK+Z4uJiI8ns3LnTuU5tj6cks3z5cq9lp4fO6b7//nsTFBRk3nrrLa/1pKene83t37/f+Pj4mNzcXGOMMVVVVaZ169ZOeOPfEhISav2+iY2NNcb88OI5bNgwr+v8VOi89957zkxGRoaRZL788ktn2X333WeSk5N/cltOBfBnn33mdTtz5szxmsvNzTU+Pj5m3759xhhjDhw4YHx9fc3q1avP4RGwR11C50zPoaf2444dO0y3bt3M8OHDTWVlpTN/an+89NJLzrJt27YZSaagoMAYY8yIESPMgAEDvLZh8uTJzn88Tp48acLCwszrr79ujDGme/fuJiMjw4SHhxtjjMnJyTHNmzd3/gM5depU06JFC6//3EyePNn07NnznB+nCw1vXV1AunXrphtvvFHx8fG69dZbtWDBApWXl+vAgQMqLi7WmDFj1LJlS+f0xBNPOIeh8/PzddVVVykkJKTWdRcUFOjaa6/1WnbttdeqoKDAa9mVV17p/DswMFBBQUEqKytz1tGrVy+5XC5npnfv3l7Xr66u1p/+9CddeeWVCg0NVcuWLbVy5UoVFRV5zV1zzTU1tvGee+5RZmampB/+Cv0777yju++++4yPme3y8vL04Ycfeu33yy+/XJK83oKo7fGsi7KyMt1///3q3Lmz3G633G63jh49etb91aZNGw0ePNh5W/Htt9/Wd999p1tvvfWctsN2tX3fFBYWqrq6WlLd99+Pvz8jIiLUokULdejQwWvZqe9X6YevkREjRqhDhw4KDg5W+/btJems+/dXv/qVrrjiCv3tb3+TJC1atEiXXXaZ+vbtW6ftvJid6Tn0lP79+6tDhw567bXX5Ofnd8Z1tGnTRpK8nodrey4/9fXkcrnUt29frV69WocPH9a2bdt0//33q7q6WgUFBVq9erWuvvpqtWzZ0rl+TEyMgoKCvG7z9G1uygidC4iPj49WrVqld999V127dtVzzz2nLl26aNeuXZKkBQsWKD8/3zlt3bpVmzZtkiQFBAScdf0/fqKVJGNMjWW+vr41rnPy5Eln/mxmzpyp2bNn6+GHH9YHH3yg/Px8JScn1/iAbGBgYI3r3nXXXdq1a5c2btyoV199VTExMbr++uvPeps2O3nypIYMGeK13/Pz81VYWOj1olPb41kXo0ePVl5enubMmaOcnBzl5+crNDS0TvvrnnvuUVZWlo4fP67MzEzdfvvtatGixTltx8Wurvvvx9+fLpfrjN+vkjRkyBAdPHhQCxYsUG5urvOZvbru31P/8cjMzNT//M//1Hi+uNg0a9asxvPg6R/ePts+kaTBgwdr3bp12r59e623c/p+luT1PFzbc/mPJSYmavXq1Vq3bp26deumSy+9VH379tWaNWu0evVqJSYm1nubmzJC5wLjcrl07bXX6rHHHtMnn3wiPz8/bdiwQb/4xS+0a9cudezY0et06n9oV155pfLz83Xo0KFa1xsbG6v169d7LcvJyVFsbGydt61r165OWJ1y+vl169bp5ptv1m9+8xt169ZNHTp0UGFhYZ3WHxoaqmHDhikzM9N5Yr3Y+Pn5Of/Ll6Srr75a27ZtU0xMTI19f7YXR19fX6911WbdunUaP368Bg0a5Hy48ccfdD6TQYMGKTAwUC+88ILefffdi/7o25nU9n3TqVMn+fj4NNhtHjx4UAUFBXrkkUd04403KjY2VuXl5XW+/m9+8xsVFRXpz3/+s7Zt26ZRo0Y12LY2Fa1bt1ZJSYlzvqKiQrt37673ep588kmNGjVKN95440/Gzk/p2rVrrc/lnTt3dr6eEhMTtW3bNr3++utO1CQkJOi9995TTk6OEhIS6r3NTRmhcwHJzc3V9OnT9dFHH6moqEhvvPGGDhw4oNjYWE2bNk0ZGRl69tln9fnnn+uzzz5TZmamZs2aJUm68847FRkZqWHDhmnDhg3atWuXli1b5nxaf/LkyVq4cKFefPFFFRYWatasWXrjjTc0adKkOm/f/fffry+//FITJkzQzp07tWTJEi1cuNBrpmPHjlq1apVycnJUUFCg++67T6WlpXW+jXvuuUevvPKKCgoKLson1piYGOXm5mrPnj365ptv9OCDD+rQoUO68847tXnzZu3atUsrV67U3XfffdaIiYmJ0fvvv6/S0tKffIHr2LGjFi1apIKCAuXm5mrkyJF1Ojoo/XAEcvTo0ZoyZYo6duxY421M/FtxcbHzfbN06VI999xzeuihhxr0Nlu1aqXQ0FDNnz9fX3zxhT744ANNmDChXtcfPny4Jk+erKSkJLVt27YBt7Zp6NevnxYtWqR169Zp69atGjVq1DnH6jPPPKORI0eqX79+2rFjR52vN3HiRL3//vv64x//qM8//1yvvPKK5s6d6/VcHhcXp9DQUC1evNgJncTERL355ps6fvy4rrvuunPa5qaK0LmABAcHa+3atRo0aJA6d+6sRx55RDNnztTAgQN1zz336KWXXtLChQsVHx+vhIQELVy40Dmi4+fnp5UrVyo8PFyDBg1SfHy8nnzySeebcNiwYXr22Wc1Y8YMXXHFFZo3b54yMzNrHMI8k8suu0zLli3TW2+9pW7duunFF1/U9OnTvWYeffRRXX311UpOTlZiYqITX3XVv39/tWnTRsnJyYqKiqrz9WwxadIk+fj4qGvXrmrdurWqqqq0YcMGVVdXKzk5WXFxcXrooYfkdrvVrNmZv31nzpypVatWKTo6WldddVWtMy+//LLKy8t11VVXKTU1VePHj1d4eHidt3fMmDGqqqriaM5Z3HXXXTp+/Lh+9atf6cEHH9S4ceN07733NuhtNmvWTFlZWcrLy1NcXJx++9vfasaMGfVaB/vX25QpU9S3b1+lpKRo0KBBGjZsmH75y1+e8/pmz56t2267Tf369dPnn39ep+tcffXVeu2115SVlaW4uDj9v//3//T4449r9OjRzozL5XKO2px6+//KK6+U2+3WVVddpeDg4HPe5qbIZerywQvgP+Tbb79VVFSUXn75ZQ0fPryxNwdnsWHDBiUmJmrv3r2KiIho7M25ICUmJqp79+41fv9KU7B48WI99NBD2r9/f60fmgWagv/8r90EanHy5EmVlpZq5syZcrvdGjp0aGNvEs6gsrJSxcXFevTRR3XbbbcROZb59ttvtXv3bmVkZOi+++4jctCk8dYVLghFRUX6xS9+oddee00vv/xyo/zqe9Td0qVL1aVLF3k8Hj399NONvTk4z55++ml1795dERERzm/QBZoq3roCAADW4ogOAACwFqEDAACsRegAAABrEToAAMBahA4AALAWoQMAAKxF6AAAAGsROgAAwFqEDgAAsNb/BzNFwI6PEvJdAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.bar(list(bank['education'].value_counts().keys()),list(bank['education'].value_counts().values),color=[\"yellow\",\"green\",\"orange\",\"red\"])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 72,
"id": "bf14619e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"no 44396\n",
"yes 815\n",
"Name: default, dtype: int64"
]
},
"execution_count": 72,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bank['default'].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 74,
"id": "2b6632d7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['no', 'yes'], dtype='object')"
]
},
"execution_count": 74,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bank['default'].value_counts().keys()"
]
},
{
"cell_type": "code",
"execution_count": 75,
"id": "c0bb7203",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([44396, 815], dtype=int64)"
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bank['default'].value_counts().values"
]
},
{
"cell_type": "code",
"execution_count": 77,
"id": "70f61b50",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAGdCAYAAAAbudkLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAf9ElEQVR4nO3df2xV9f3H8Vcr7aWW9tjStdeGaiASBiuQWRw/3IAIFEwLmhk10nVuUwxiqY0QM7ZkgNkow29wGjJBl+icCzUZYtSxrmVz1Ybyw7LGloqZC6OltoBwe1sQ2tJ+vn8snuxSRG4RS988H8nnj577vr2fQ0Lv08O5NsY55wQAAGBQ7GBvAAAA4EohdAAAgFmEDgAAMIvQAQAAZhE6AADALEIHAACYRegAAACzCB0AAGDWsMHewGDq6+vTJ598oqSkJMXExAz2dgAAwCVwzqmzs1OZmZmKjb34NZtrOnQ++eQTZWVlDfY2AADAADQ3N2vUqFEXnbmmQycpKUnSf/+gkpOTB3k3AADgUnR0dCgrK8t/H7+Yazp0Pv/nquTkZEIHAIAh5lJuO+FmZAAAYBahAwAAzCJ0AACAWYQOAAAwi9ABAABmEToAAMAsQgcAAJhF6AAAALMIHQAAYBahAwAAzCJ0AACAWYQOAAAwi9ABAABmEToAAMCsYYO9AdMu4dfHA9cs5wZ7BwCuAVzRAQAAZhE6AADALEIHAACYRegAAACzCB0AAGAWoQMAAMwidAAAgFmEDgAAMIvQAQAAZhE6AADALEIHAACYRegAAACzCB0AAGAWoQMAAMwidAAAgFmEDgAAMIvQAQAAZhE6AADALEIHAACYRegAAACzCB0AAGAWoQMAAMwidAAAgFmEDgAAMIvQAQAAZhE6AADALEIHAACYRegAAACzCB0AAGAWoQMAAMy6rNApLS1VTEyMSkpK/GPOOa1Zs0aZmZlKSEjQ7NmzdeDAgYjndXV1afny5UpLS1NiYqIWLVqkI0eORMyEQiEVFhbK8zx5nqfCwkK1t7dHzDQ1NWnhwoVKTExUWlqaiouL1d3dfTmnBAAADBlw6Ozbt08vvPCCJk2aFHF8w4YN2rhxozZt2qR9+/YpGAxq3rx56uzs9GdKSkq0fft2lZWVqbq6WqdOnVJ+fr56e3v9mcWLF6uurk7l5eUqLy9XXV2dCgsL/cd7e3uVl5en06dPq7q6WmVlZdq2bZtWrFgx0FMCAADWuAHo7Ox0Y8eOdZWVlW7WrFnu8ccfd84519fX54LBoFu/fr0/e/bsWed5ntu8ebNzzrn29nYXFxfnysrK/JmWlhYXGxvrysvLnXPONTY2Oklu9+7d/kxNTY2T5A4ePOicc27Hjh0uNjbWtbS0+DNbt251gUDAhcPhSzqPcDjsJF3yfNQkFov1RQsABiia9+8BXdF57LHHlJeXp7lz50YcP3TokNra2pSbm+sfCwQCmjVrlnbt2iVJqq2tVU9PT8RMZmamsrOz/Zmamhp5nqepU6f6M9OmTZPneREz2dnZyszM9Gfmz5+vrq4u1dbWXnDfXV1d6ujoiFgAAMCuYdE+oaysTPv379e+ffv6PdbW1iZJysjIiDiekZGhw4cP+zPx8fFKSUnpN/P589va2pSent7v+6enp0fMnP86KSkpio+P92fOV1paqrVr117KaQIAAAOiuqLT3Nysxx9/XK+++qqGDx/+hXMxMTERXzvn+h073/kzF5ofyMz/WrVqlcLhsL+am5svuicAADC0RRU6tbW1OnbsmHJycjRs2DANGzZMVVVVeu655zRs2DD/Csv5V1SOHTvmPxYMBtXd3a1QKHTRmaNHj/Z7/ePHj0fMnP86oVBIPT09/a70fC4QCCg5OTliAQAAu6IKnTlz5qi+vl51dXX+mjJligoKClRXV6cxY8YoGAyqsrLSf053d7eqqqo0Y8YMSVJOTo7i4uIiZlpbW9XQ0ODPTJ8+XeFwWHv37vVn9uzZo3A4HDHT0NCg1tZWf6aiokKBQEA5OTkD+KMAAADWRHWPTlJSkrKzsyOOJSYmauTIkf7xkpISrVu3TmPHjtXYsWO1bt06XX/99Vq8eLEkyfM8PfTQQ1qxYoVGjhyp1NRUrVy5UhMnTvRvbh4/frwWLFigJUuWaMuWLZKkRx55RPn5+Ro3bpwkKTc3VxMmTFBhYaGefvppnTx5UitXrtSSJUu4UgMAACQN4GbkL/Pkk0/qzJkzWrZsmUKhkKZOnaqKigolJSX5M88884yGDRum++67T2fOnNGcOXP08ssv67rrrvNn/vjHP6q4uNj/dNaiRYu0adMm//HrrrtOf/7zn7Vs2TLdfvvtSkhI0OLFi/V///d/X/UpAQCAISrGOecGexODpaOjQ57nKRwOX5mrQF9yAzZwTbt2f/QAuEzRvH/zu64AAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwKyoQuf555/XpEmTlJycrOTkZE2fPl1/+ctf/Medc1qzZo0yMzOVkJCg2bNn68CBAxHfo6urS8uXL1daWpoSExO1aNEiHTlyJGImFAqpsLBQnufJ8zwVFhaqvb09YqapqUkLFy5UYmKi0tLSVFxcrO7u7ihPHwAAWBZV6IwaNUrr16/X+++/r/fff1933HGH7rrrLj9mNmzYoI0bN2rTpk3at2+fgsGg5s2bp87OTv97lJSUaPv27SorK1N1dbVOnTql/Px89fb2+jOLFy9WXV2dysvLVV5errq6OhUWFvqP9/b2Ki8vT6dPn1Z1dbXKysq0bds2rVix4nL/PAAAgCXuMqWkpLjf/e53rq+vzwWDQbd+/Xr/sbNnzzrP89zmzZudc861t7e7uLg4V1ZW5s+0tLS42NhYV15e7pxzrrGx0Ulyu3fv9mdqamqcJHfw4EHnnHM7duxwsbGxrqWlxZ/ZunWrCwQCLhwOX/Lew+GwkxTVc6IisVisL1oAMEDRvH8P+B6d3t5elZWV6fTp05o+fboOHTqktrY25ebm+jOBQECzZs3Srl27JEm1tbXq6emJmMnMzFR2drY/U1NTI8/zNHXqVH9m2rRp8jwvYiY7O1uZmZn+zPz589XV1aXa2tov3HNXV5c6OjoiFgAAsCvq0Kmvr9eIESMUCAS0dOlSbd++XRMmTFBbW5skKSMjI2I+IyPDf6ytrU3x8fFKSUm56Ex6enq/101PT4+YOf91UlJSFB8f789cSGlpqX/fj+d5ysrKivLsAQDAUBJ16IwbN051dXXavXu3Hn30UT344INqbGz0H4+JiYmYd871O3a+82cuND+QmfOtWrVK4XDYX83NzRfdFwAAGNqiDp34+HjdcsstmjJlikpLSzV58mQ9++yzCgaDktTvisqxY8f8qy/BYFDd3d0KhUIXnTl69Gi/1z1+/HjEzPmvEwqF1NPT0+9Kz/8KBAL+J8Y+XwAAwK7L/v/oOOfU1dWl0aNHKxgMqrKy0n+su7tbVVVVmjFjhiQpJydHcXFxETOtra1qaGjwZ6ZPn65wOKy9e/f6M3v27FE4HI6YaWhoUGtrqz9TUVGhQCCgnJycyz0lAABgRTR3Oa9atcq9++677tChQ+6DDz5wP/vZz1xsbKyrqKhwzjm3fv1653mee/311119fb174IEH3I033ug6Ojr877F06VI3atQot3PnTrd//353xx13uMmTJ7tz5875MwsWLHCTJk1yNTU1rqamxk2cONHl5+f7j587d85lZ2e7OXPmuP3797udO3e6UaNGuaKiomhOh09dsViDuQBggKJ5/47qp81PfvITd/PNN7v4+Hj3jW98w82ZM8ePHOec6+vrc6tXr3bBYNAFAgE3c+ZMV19fH/E9zpw544qKilxqaqpLSEhw+fn5rqmpKWLmxIkTrqCgwCUlJbmkpCRXUFDgQqFQxMzhw4ddXl6eS0hIcKmpqa6oqMidPXs2mtMhdFiswVwAMEDRvH/HOOfc4F5TGjwdHR3yPE/hcPjK3K/zJTdhA9e0a/dHD4DLFM37N7/rCgAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZUYVOaWmpbrvtNiUlJSk9PV133323Pvroo4gZ55zWrFmjzMxMJSQkaPbs2Tpw4EDETFdXl5YvX660tDQlJiZq0aJFOnLkSMRMKBRSYWGhPM+T53kqLCxUe3t7xExTU5MWLlyoxMREpaWlqbi4WN3d3dGcEgAAMCyq0KmqqtJjjz2m3bt3q7KyUufOnVNubq5Onz7tz2zYsEEbN27Upk2btG/fPgWDQc2bN0+dnZ3+TElJibZv366ysjJVV1fr1KlTys/PV29vrz+zePFi1dXVqby8XOXl5aqrq1NhYaH/eG9vr/Ly8nT69GlVV1errKxM27Zt04oVKy7nzwMAAFjiLsOxY8ecJFdVVeWcc66vr88Fg0G3fv16f+bs2bPO8zy3efNm55xz7e3tLi4uzpWVlfkzLS0tLjY21pWXlzvnnGtsbHSS3O7du/2ZmpoaJ8kdPHjQOefcjh07XGxsrGtpafFntm7d6gKBgAuHw5e0/3A47CRd8nzUJBaL9UULAAYomvfvy7pHJxwOS5JSU1MlSYcOHVJbW5tyc3P9mUAgoFmzZmnXrl2SpNraWvX09ETMZGZmKjs725+pqamR53maOnWqPzNt2jR5nhcxk52drczMTH9m/vz56urqUm1t7QX329XVpY6OjogFAADsGnDoOOf0xBNP6Lvf/a6ys7MlSW1tbZKkjIyMiNmMjAz/sba2NsXHxyslJeWiM+np6f1eMz09PWLm/NdJSUlRfHy8P3O+0tJS/54fz/OUlZUV7WkDAIAhZMChU1RUpA8++EBbt27t91hMTEzE1865fsfOd/7MheYHMvO/Vq1apXA47K/m5uaL7gkAAAxtAwqd5cuX680339Q777yjUaNG+ceDwaAk9buicuzYMf/qSzAYVHd3t0Kh0EVnjh492u91jx8/HjFz/uuEQiH19PT0u9LzuUAgoOTk5IgFAADsiip0nHMqKirS66+/rr///e8aPXp0xOOjR49WMBhUZWWlf6y7u1tVVVWaMWOGJCknJ0dxcXERM62trWpoaPBnpk+frnA4rL179/oze/bsUTgcjphpaGhQa2urP1NRUaFAIKCcnJxoTgsAAFgVzV3Ojz76qPM8z/3jH/9wra2t/vrss8/8mfXr1zvP89zrr7/u6uvr3QMPPOBuvPFG19HR4c8sXbrUjRo1yu3cudPt37/f3XHHHW7y5Mnu3Llz/syCBQvcpEmTXE1NjaupqXETJ050+fn5/uPnzp1z2dnZbs6cOW7//v1u586dbtSoUa6oqOiSz4dPXbFYg7gAYICief+O6qeNpAuul156yZ/p6+tzq1evdsFg0AUCATdz5kxXX18f8X3OnDnjioqKXGpqqktISHD5+fmuqakpYubEiROuoKDAJSUluaSkJFdQUOBCoVDEzOHDh11eXp5LSEhwqamprqioyJ09e/aSz4fQYbEGcQHAAEXz/h3jnHODdTVpsHV0dMjzPIXD4Stzv86X3IANXNOu3R89AC5TNO/f/K4rAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADCL0AEAAGYROgAAwCxCBwAAmEXoAAAAswgdAABgFqEDAADMInQAAIBZhA4AADAr6tB59913tXDhQmVmZiomJkZvvPFGxOPOOa1Zs0aZmZlKSEjQ7NmzdeDAgYiZrq4uLV++XGlpaUpMTNSiRYt05MiRiJlQKKTCwkJ5nifP81RYWKj29vaImaamJi1cuFCJiYlKS0tTcXGxuru7oz0lAABgVNShc/r0aU2ePFmbNm264OMbNmzQxo0btWnTJu3bt0/BYFDz5s1TZ2enP1NSUqLt27errKxM1dXVOnXqlPLz89Xb2+vPLF68WHV1dSovL1d5ebnq6upUWFjoP97b26u8vDydPn1a1dXVKisr07Zt27RixYpoTwkAAFjlLoMkt337dv/rvr4+FwwG3fr16/1jZ8+edZ7nuc2bNzvnnGtvb3dxcXGurKzMn2lpaXGxsbGuvLzcOedcY2Ojk+R2797tz9TU1DhJ7uDBg84553bs2OFiY2NdS0uLP7N161YXCARcOBy+pP2Hw2En6ZLnoyaxWKwvWgAwQNG8f3+l9+gcOnRIbW1tys3N9Y8FAgHNmjVLu3btkiTV1taqp6cnYiYzM1PZ2dn+TE1NjTzP09SpU/2ZadOmyfO8iJns7GxlZmb6M/Pnz1dXV5dqa2svuL+uri51dHRELAAAYNdXGjptbW2SpIyMjIjjGRkZ/mNtbW2Kj49XSkrKRWfS09P7ff/09PSImfNfJyUlRfHx8f7M+UpLS/17fjzPU1ZW1gDOEgAADBVX5FNXMTExEV875/odO9/5MxeaH8jM/1q1apXC4bC/mpubL7onAAAwtH2loRMMBiWp3xWVY8eO+VdfgsGguru7FQqFLjpz9OjRft//+PHjETPnv04oFFJPT0+/Kz2fCwQCSk5OjlgAAMCurzR0Ro8erWAwqMrKSv9Yd3e3qqqqNGPGDElSTk6O4uLiImZaW1vV0NDgz0yfPl3hcFh79+71Z/bs2aNwOBwx09DQoNbWVn+moqJCgUBAOTk5X+VpAQCAIWpYtE84deqUPv74Y//rQ4cOqa6uTqmpqbrppptUUlKidevWaezYsRo7dqzWrVun66+/XosXL5YkeZ6nhx56SCtWrNDIkSOVmpqqlStXauLEiZo7d64kafz48VqwYIGWLFmiLVu2SJIeeeQR5efna9y4cZKk3NxcTZgwQYWFhXr66ad18uRJrVy5UkuWLOFKDQAA+K9oP9L1zjvvOEn91oMPPuic++9HzFevXu2CwaALBAJu5syZrr6+PuJ7nDlzxhUVFbnU1FSXkJDg8vPzXVNTU8TMiRMnXEFBgUtKSnJJSUmuoKDAhUKhiJnDhw+7vLw8l5CQ4FJTU11RUZE7e/bsJZ8LHy9nsQZxAcAARfP+HeOcc4PYWYOqo6NDnucpHA5fmatAX3IDNnBNu3Z/9AC4TNG8f/O7rgAAgFmEDgAAMIvQAQAAZhE6AADALEIHAACYRegAAACzCB0AAGAWoQMAAMwidAAAgFmEDgAAMIvQAQAAZhE6AADALEIHAACYRegAAACzCB0AAGAWoQMAAMwidAAAgFmEDgAAMIvQAQAAZhE6AADALEIHAACYRegAAACzCB0AAGAWoQMAAMwidAAAgFmEDgAAMIvQAQAAZhE6AADALEIHAACYRegAAACzCB0AAGAWoQMAAMwidAAAgFmEDgAAMIvQAQAAZhE6AADALEIHAACYRegAAACzCB0AAGAWoQMAAMwidAAAgFmEDgAAMIvQAQAAZhE6AADALEIHAACYRegAAACzCB0AAGAWoQMAAMwidAAAgFmEDgAAMIvQAQAAZhE6AADALEIHAACYRegAAACzCB0AAGAWoQMAAMwidAAAgFmEDgAAMIvQAQAAZhE6AADALEIHAACYRegAAACzCB0AAGAWoQMAAMwidAAAgFmEDgAAMGvYYG8AAIaymLUxg70F4KrmVrtBfX2u6AAAALOGfOj89re/1ejRozV8+HDl5OTovffeG+wtAQCAq8SQDp3XXntNJSUl+vnPf65//vOf+t73vqc777xTTU1Ng701AABwFRjSobNx40Y99NBDevjhhzV+/Hj95je/UVZWlp5//vnB3hoAALgKDNmbkbu7u1VbW6uf/vSnEcdzc3O1a9euCz6nq6tLXV1d/tfhcFiS1NHRceU2CuDCrPy9OzvYGwCublfiPfbz7+ncl9/oPGRD59NPP1Vvb68yMjIijmdkZKitre2CzyktLdXatWv7Hc/KyroiewRwEZ432DsA8DXw1l+5v+udnZ3yvuRnyZANnc/FxER+tNM51+/Y51atWqUnnnjC/7qvr08nT57UyJEjv/A5sKGjo0NZWVlqbm5WcnLyYG8HwBXA3/Nrh3NOnZ2dyszM/NLZIRs6aWlpuu666/pdvTl27Fi/qzyfCwQCCgQCEcduuOGGK7VFXIWSk5P5AQgYx9/za8OXXcn53JC9GTk+Pl45OTmqrKyMOF5ZWakZM2YM0q4AAMDVZMhe0ZGkJ554QoWFhZoyZYqmT5+uF154QU1NTVq6dOlgbw0AAFwFhnTo3H///Tpx4oSeeuoptba2Kjs7Wzt27NDNN9882FvDVSYQCGj16tX9/ukSgB38PceFxLhL+WwWAADAEDRk79EBAAD4MoQOAAAwi9ABAABmEToAAMAsQgcAAJhF6AAAALMIHZgxe/ZsFRcX68knn1RqaqqCwaDWrFnjP97U1KS77rpLI0aMUHJysu677z4dPXp08DYM4JK88sorGjlypLq6uiKO33PPPfrhD38oSXrrrbeUk5Oj4cOHa8yYMVq7dq3OnTvnz65Zs0Y33XSTAoGAMjMzVVxc/LWeAwYPoQNTfv/73ysxMVF79uzRhg0b9NRTT6myslLOOd199906efKkqqqqVFlZqX//+9+6//77B3vLAL7Evffeq97eXr355pv+sU8//VRvv/22fvzjH+uvf/2rfvCDH6i4uFiNjY3asmWLXn75Zf3qV7+SJP3pT3/SM888oy1btuhf//qX3njjDU2cOHGwTgdfM/6HgTBj9uzZ6u3t1Xvvvecf+853vqM77rhDc+bM0Z133qlDhw4pKytLktTY2Khvfetb2rt3r2677bbB2jaAS7Bs2TL95z//0Y4dOyRJzz77rJ577jl9/PHHmjVrlu68806tWrXKn3/11Vf15JNP6pNPPtHGjRu1ZcsWNTQ0KC4ubrBOAYOEKzowZdKkSRFf33jjjTp27Jg+/PBDZWVl+ZEjSRMmTNANN9ygDz/88OveJoAoLVmyRBUVFWppaZEkvfTSS/rRj36kmJgY1dbW6qmnntKIESP8tWTJErW2tuqzzz7TvffeqzNnzmjMmDFasmSJtm/fHvHPWrBtSP+uK+B85//XWkxMjPr6+uScU0xMTL/5LzoO4Ory7W9/W5MnT9Yrr7yi+fPnq76+Xm+99ZYkqa+vT2vXrtX3v//9fs8bPny4srKy9NFHH6myslI7d+7UsmXL9PTTT6uqqoorPNcAQgfXhAkTJqipqUnNzc0R/3QVDoc1fvz4Qd4dgEvx8MMP65lnnlFLS4vmzp3r/12+9dZb9dFHH+mWW275wucmJCRo0aJFWrRokR577DF985vfVH19vW699dava/sYJIQOrglz587VpEmTVFBQoN/85jc6d+6cli1bplmzZmnKlCmDvT0Al6CgoEArV67Uiy++qFdeecU//otf/EL5+fnKysrSvffeq9jYWH3wwQeqr6/XL3/5S7388svq7e3V1KlTdf311+sPf/iDEhISdPPNNw/i2eDrwj06uCbExMTojTfeUEpKimbOnKm5c+dqzJgxeu211wZ7awAuUXJysu655x6NGDFCd999t398/vz5evvtt1VZWanbbrtN06ZN08aNG/2QueGGG/Tiiy/q9ttv16RJk/S3v/1Nb731lkaOHDlIZ4KvE5+6AgAMGfPmzdP48eP13HPPDfZWMEQQOgCAq97JkydVUVGhgoICNTY2aty4cYO9JQwR3KMDALjq3XrrrQqFQvr1r39N5CAqXNEBAABmcTMyAAAwi9ABAABmEToAAMAsQgcAAJhF6AAAALMIHQAAYBahAwAAzCJ0AACAWYQOAAAw6/8BJhc+wGWQFRsAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.bar(list(bank['default'].value_counts().keys()),list(bank['default'].value_counts().values),color=[\"red\",\"green\"])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 81,
"id": "3823189d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: xlabel='balance', ylabel='Count'>"
]
},
"execution_count": 81,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA400lEQVR4nO3de3RU9b3//9eQhCHEsOViMowEjccUoYEWg4agNShXa0w99lvUaMRKAcslpMJBqe2RY2uCrAqemoqgFlrBpr9+FQ/HY1OClyglXAymclW6TOViQqidTILNdebz+8PD/jokYAghE9jPx1p7tfPZ79n7sz+g8/Kzby5jjBEAAICD9Qh3BwAAAMKNQAQAAByPQAQAAByPQAQAAByPQAQAAByPQAQAAByPQAQAABwvMtwdOF8Eg0F9+umnio2NlcvlCnd3AABAOxhjVFdXJ6/Xqx49Tj0PRCBqp08//VQJCQnh7gYAAOiAQ4cOadCgQadcTyBqp9jYWElfDGifPn3C3BsAANAetbW1SkhIsH/HT4VA1E4nTpP16dOHQAQAwHnmqy534aJqAADgeAQiAADgeAQiAADgeAQiAADgeAQiAADgeAQiAADgeAQiAADgeAQiAADgeGENRJdffrlcLlerZfbs2ZK+eP/I4sWL5fV6FR0drbFjx2rPnj0h22hsbNTcuXM1YMAAxcTEKDMzU4cPHw6p8fl8ys7OlmVZsixL2dnZqqmp6arDBAAA3VxYA9GOHTtUWVlpL8XFxZKk733ve5KkpUuXatmyZSooKNCOHTvk8Xg0YcIE1dXV2dvIzc3V+vXrVVhYqM2bN+v48ePKyMhQIBCwa7KyslReXq6ioiIVFRWpvLxc2dnZXXuwAACg23IZY0y4O3FCbm6uXnvtNR04cECS5PV6lZubq4ceekjSF7NB8fHxeuKJJzRz5kz5/X5dcsklevHFF3XHHXdI+n8vYX399dc1adIk7du3T8OGDdPWrVuVmpoqSdq6davS0tK0f/9+DRkypM2+NDY2qrGx0f584l0ofr+fV3cAAHCeqK2tlWVZX/n73W2uIWpqatLatWt1//33y+VyqaKiQlVVVZo4caJd43a7lZ6eri1btkiSysrK1NzcHFLj9XqVnJxs15SWlsqyLDsMSdLo0aNlWZZd05b8/Hz7FJtlWbzpHgCAC1i3CUSvvvqqampqdN9990mSqqqqJEnx8fEhdfHx8fa6qqoq9ezZU3379j1tTVxcXKv9xcXF2TVtWbRokfx+v70cOnSow8cGAAC6t27ztvsXXnhBN998s7xeb0j7yW+nNcZ85RtrT65pq/6rtuN2u+V2u9vTdQAAcJ7rFjNEn3zyiTZt2qQf/OAHdpvH45GkVrM41dXV9qyRx+NRU1OTfD7faWuOHj3aap/Hjh1rNfsEAACcqVsEotWrVysuLk633HKL3ZaYmCiPx2PfeSZ9cZ1RSUmJxowZI0lKSUlRVFRUSE1lZaV2795t16Slpcnv92v79u12zbZt2+T3++0ap2tpaVFLS0u4uwEAQNiE/ZRZMBjU6tWrNXXqVEVG/r/uuFwu5ebmKi8vT0lJSUpKSlJeXp569+6trKwsSZJlWZo2bZrmz5+v/v37q1+/flqwYIGGDx+u8ePHS5KGDh2qyZMna/r06Vq5cqUkacaMGcrIyDjlHWYAAMBZwh6INm3apIMHD+r+++9vtW7hwoWqr6/XrFmz5PP5lJqaqo0bNyo2NtauWb58uSIjIzVlyhTV19dr3LhxWrNmjSIiIuyadevWKScnx74bLTMzUwUFBef+4AAAwHmhWz2HqDtr73MMzkcnTpd9eYYOAIALwXn3HCIAAIBwIRABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHC3sgOnLkiO655x71799fvXv31je/+U2VlZXZ640xWrx4sbxer6KjozV27Fjt2bMnZBuNjY2aO3euBgwYoJiYGGVmZurw4cMhNT6fT9nZ2bIsS5ZlKTs7WzU1NV1xiAAAoJsLayDy+Xy67rrrFBUVpT/+8Y/au3evnnzySV188cV2zdKlS7Vs2TIVFBRox44d8ng8mjBhgurq6uya3NxcrV+/XoWFhdq8ebOOHz+ujIwMBQIBuyYrK0vl5eUqKipSUVGRysvLlZ2d3ZWHCwAAuimXMcaEa+cPP/yw/vznP+vdd99tc70xRl6vV7m5uXrooYckfTEbFB8fryeeeEIzZ86U3+/XJZdcohdffFF33HGHJOnTTz9VQkKCXn/9dU2aNEn79u3TsGHDtHXrVqWmpkqStm7dqrS0NO3fv19Dhgxpte/GxkY1Njban2tra5WQkCC/368+ffp09lCEVUtLiyQpMjIyzD0BAKBz1dbWyrKsr/z9DusM0YYNGzRq1Ch973vfU1xcnEaOHKnnnnvOXl9RUaGqqipNnDjRbnO73UpPT9eWLVskSWVlZWpubg6p8Xq9Sk5OtmtKS0tlWZYdhiRp9OjRsizLrjlZfn6+fXrNsiwlJCR06rEDAIDuI6yB6OOPP9aKFSuUlJSkP/3pT3rggQeUk5Oj3/72t5KkqqoqSVJ8fHzI9+Lj4+11VVVV6tmzp/r27Xvamri4uFb7j4uLs2tOtmjRIvn9fns5dOjQ2R0sAADotsJ6jiQYDGrUqFHKy8uTJI0cOVJ79uzRihUrdO+999p1Lpcr5HvGmFZtJzu5pq36023H7XbL7Xa3+1gAAMD5K6wzRAMHDtSwYcNC2oYOHaqDBw9KkjwejyS1msWprq62Z408Ho+amprk8/lOW3P06NFW+z927Fir2ScAAOA8YQ1E1113nT788MOQto8++kiXXXaZJCkxMVEej0fFxcX2+qamJpWUlGjMmDGSpJSUFEVFRYXUVFZWavfu3XZNWlqa/H6/tm/fbtds27ZNfr/frgEAAM4V1lNmP/rRjzRmzBjl5eVpypQp2r59u1atWqVVq1ZJ+uI0V25urvLy8pSUlKSkpCTl5eWpd+/eysrKkiRZlqVp06Zp/vz56t+/v/r166cFCxZo+PDhGj9+vKQvZp0mT56s6dOna+XKlZKkGTNmKCMjo807zAAAgLOENRBdc801Wr9+vRYtWqTHHntMiYmJeuqpp3T33XfbNQsXLlR9fb1mzZoln8+n1NRUbdy4UbGxsXbN8uXLFRkZqSlTpqi+vl7jxo3TmjVrFBERYdesW7dOOTk59t1omZmZKigo6LqDBQAA3VZYn0N0PmnvcwzORzyHCABwoTovnkMEAADQHRCIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA4xGIAACA44U1EC1evFgulytk8Xg89npjjBYvXiyv16vo6GiNHTtWe/bsCdlGY2Oj5s6dqwEDBigmJkaZmZk6fPhwSI3P51N2drYsy5JlWcrOzlZNTU1XHCIAADgPhH2G6Otf/7oqKyvtZdeuXfa6pUuXatmyZSooKNCOHTvk8Xg0YcIE1dXV2TW5ublav369CgsLtXnzZh0/flwZGRkKBAJ2TVZWlsrLy1VUVKSioiKVl5crOzu7S48TAAB0X5Fh70BkZMis0AnGGD311FN65JFHdPvtt0uSfvOb3yg+Pl4vvfSSZs6cKb/frxdeeEEvvviixo8fL0lau3atEhIStGnTJk2aNEn79u1TUVGRtm7dqtTUVEnSc889p7S0NH344YcaMmRI1x0sAADolsI+Q3TgwAF5vV4lJibqzjvv1McffyxJqqioUFVVlSZOnGjXut1upaena8uWLZKksrIyNTc3h9R4vV4lJyfbNaWlpbIsyw5DkjR69GhZlmXXtKWxsVG1tbUhCwAAuDCFNRClpqbqt7/9rf70pz/pueeeU1VVlcaMGaPPPvtMVVVVkqT4+PiQ78THx9vrqqqq1LNnT/Xt2/e0NXFxca32HRcXZ9e0JT8/377myLIsJSQknNWxAgCA7iusgejmm2/Wd7/7XQ0fPlzjx4/X//zP/0j64tTYCS6XK+Q7xphWbSc7uaat+q/azqJFi+T3++3l0KFD7TomAABw/gn7KbMvi4mJ0fDhw3XgwAH7uqKTZ3Gqq6vtWSOPx6Ompib5fL7T1hw9erTVvo4dO9Zq9unL3G63+vTpE7IAAIALU7cKRI2Njdq3b58GDhyoxMREeTweFRcX2+ubmppUUlKiMWPGSJJSUlIUFRUVUlNZWandu3fbNWlpafL7/dq+fbtds23bNvn9frsGAAA4W1jvMluwYIFuvfVWDR48WNXV1fr5z3+u2tpaTZ06VS6XS7m5ucrLy1NSUpKSkpKUl5en3r17KysrS5JkWZamTZum+fPnq3///urXr58WLFhgn4KTpKFDh2ry5MmaPn26Vq5cKUmaMWOGMjIyuMMMAABICnMgOnz4sO666y79/e9/1yWXXKLRo0dr69atuuyyyyRJCxcuVH19vWbNmiWfz6fU1FRt3LhRsbGx9jaWL1+uyMhITZkyRfX19Ro3bpzWrFmjiIgIu2bdunXKycmx70bLzMxUQUFB1x4sAADotlzGGBPuTpwPamtrZVmW/H7/BXc9UUtLi6QvngkFAMCFpL2/393qGiIAAIBwIBABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADHIxABAADH6zaBKD8/Xy6XS7m5uXabMUaLFy+W1+tVdHS0xo4dqz179oR8r7GxUXPnztWAAQMUExOjzMxMHT58OKTG5/MpOztblmXJsixlZ2erpqamC44KAACcD7pFINqxY4dWrVqlESNGhLQvXbpUy5YtU0FBgXbs2CGPx6MJEyaorq7OrsnNzdX69etVWFiozZs36/jx48rIyFAgELBrsrKyVF5erqKiIhUVFam8vFzZ2dlddnwAAKCbM2FWV1dnkpKSTHFxsUlPTzfz5s0zxhgTDAaNx+MxS5YssWsbGhqMZVnm2WefNcYYU1NTY6KiokxhYaFdc+TIEdOjRw9TVFRkjDFm7969RpLZunWrXVNaWmokmf3797e7n36/30gyfr//bA63W2pubjbNzc3h7gYAAJ2uvb/fYZ8hmj17tm655RaNHz8+pL2iokJVVVWaOHGi3eZ2u5Wenq4tW7ZIksrKytTc3BxS4/V6lZycbNeUlpbKsiylpqbaNaNHj5ZlWXZNWxobG1VbWxuyAACAC1OHAtEVV1yhzz77rFV7TU2NrrjiinZvp7CwUDt37lR+fn6rdVVVVZKk+Pj4kPb4+Hh7XVVVlXr27Km+ffuetiYuLq7V9uPi4uyatuTn59vXHFmWpYSEhHYfFwAAOL90KBD97W9/C7lG54TGxkYdOXKkXds4dOiQ5s2bp7Vr16pXr16nrHO5XCGfjTGt2k52ck1b9V+1nUWLFsnv99vLoUOHTrtPAABw/oo8k+INGzbY//9Pf/qTLMuyPwcCAb3xxhu6/PLL27WtsrIyVVdXKyUlJWQb77zzjgoKCvThhx9K+mKGZ+DAgXZNdXW1PWvk8XjU1NQkn88XMktUXV2tMWPG2DVHjx5ttf9jx461mn36MrfbLbfb3a5jAQAA57czCkS33XabpC9mXKZOnRqyLioqSpdffrmefPLJdm1r3Lhx2rVrV0jb97//fV111VV66KGHdMUVV8jj8ai4uFgjR46UJDU1NamkpERPPPGEJCklJUVRUVEqLi7WlClTJEmVlZXavXu3li5dKklKS0uT3+/X9u3bde2110qStm3bJr/fb4cmAADgbGcUiILBoCQpMTFRO3bs0IABAzq849jYWCUnJ4e0xcTEqH///nZ7bm6u8vLylJSUpKSkJOXl5al3797KysqSJFmWpWnTpmn+/Pnq37+/+vXrpwULFmj48OH2RdpDhw7V5MmTNX36dK1cuVKSNGPGDGVkZGjIkCEd7j8AALhwnFEgOqGioqKz+9GmhQsXqr6+XrNmzZLP51Nqaqo2btyo2NhYu2b58uWKjIzUlClTVF9fr3HjxmnNmjWKiIiwa9atW6ecnBz7brTMzEwVFBR0yTEAAIDuz2WMMR354htvvKE33nhD1dXV9szRCb/+9a87pXPdSW1trSzLkt/vV58+fcLdnU7V0tIiSYqM7FA+BgCg22rv73eHfgH/4z/+Q4899phGjRqlgQMHfuVdXwAAAN1ZhwLRs88+qzVr1vD6CwAAcEHo0HOImpqauEMLAABcMDoUiH7wgx/opZde6uy+AAAAhEWHTpk1NDRo1apV2rRpk0aMGKGoqKiQ9cuWLeuUzgEAAHSFDgWiDz74QN/85jclSbt37w5ZxwXWAADgfNOhQPTWW291dj8AAADCpkPXEAEAAFxIOjRDdOONN5721Nibb77Z4Q4BAAB0tQ4FohPXD53Q3Nys8vJy7d69u9VLXwEAALq7DgWi5cuXt9m+ePFiHT9+/Kw6BAAA0NU69Rqie+6554J8jxkAALiwdWogKi0tVa9evTpzkwAAAOdch06Z3X777SGfjTGqrKzUe++9p5/+9Ked0jEAAICu0qFAZFlWyOcePXpoyJAheuyxxzRx4sRO6RgAAEBX6VAgWr16dWf3AwAAIGw6FIhOKCsr0759++RyuTRs2DCNHDmys/oFAADQZToUiKqrq3XnnXfq7bff1sUXXyxjjPx+v2688UYVFhbqkksu6ex+AgAAnDMdusts7ty5qq2t1Z49e/SPf/xDPp9Pu3fvVm1trXJycjq7jwAAAOdUh2aIioqKtGnTJg0dOtRuGzZsmH71q19xUTUAADjvdGiGKBgMKioqqlV7VFSUgsHgWXcKAACgK3UoEN10002aN2+ePv30U7vtyJEj+tGPfqRx48Z1WucAAAC6QocCUUFBgerq6nT55ZfrX/7lX3TllVcqMTFRdXV1evrppzu7jwAAAOdUh64hSkhI0M6dO1VcXKz9+/fLGKNhw4Zp/Pjxnd0/AACAc+6MZojefPNNDRs2TLW1tZKkCRMmaO7cucrJydE111yjr3/963r33XfPSUcBAADOlTMKRE899ZSmT5+uPn36tFpnWZZmzpypZcuWdVrnAAAAusIZBaK//OUvmjx58inXT5w4UWVlZWfdKQAAgK50RoHo6NGjbd5uf0JkZKSOHTt21p0CAADoSmcUiC699FLt2rXrlOs/+OADDRw48Kw7BQAA0JXOKBB9+9vf1r//+7+roaGh1br6+no9+uijysjI6LTOAQAAdAWXMca0t/jo0aO6+uqrFRERoTlz5mjIkCFyuVzat2+ffvWrXykQCGjnzp2Kj48/l30Oi9raWlmWJb/f3+ZF5eezlpYWSV+c8gQA4ELS3t/vM/oFjI+P15YtW/TDH/5QixYt0oks5XK5NGnSJD3zzDMXZBgCAAAXtjOeErjsssv0+uuvy+fz6a9//auMMUpKSlLfvn3PRf8AAADOuQ6fI+nbt6+uueaazuwLAABAWHToXWYAAAAXEgIRAABwPAIRAABwPAIRAABwPAIRAABwPAIRAABwvLAGohUrVmjEiBHq06eP+vTpo7S0NP3xj3+01xtjtHjxYnm9XkVHR2vs2LHas2dPyDYaGxs1d+5cDRgwQDExMcrMzNThw4dDanw+n7Kzs2VZlizLUnZ2tmpqarriEM8Lxhi1tLToDB5aDgDABSWsgWjQoEFasmSJ3nvvPb333nu66aab9J3vfMcOPUuXLtWyZctUUFCgHTt2yOPxaMKECaqrq7O3kZubq/Xr16uwsFCbN2/W8ePHlZGRoUAgYNdkZWWpvLxcRUVFKioqUnl5ubKzs7v8eLurQCCgrJWbQ8YMAABHMd1M3759zfPPP2+CwaDxeDxmyZIl9rqGhgZjWZZ59tlnjTHG1NTUmKioKFNYWGjXHDlyxPTo0cMUFRUZY4zZu3evkWS2bt1q15SWlhpJZv/+/afsR0NDg/H7/fZy6NAhI8n4/f7OPuSwq6+vN999+k3T3Nwc7q4AANCp/H5/u36/u801RIFAQIWFhfr888+VlpamiooKVVVVaeLEiXaN2+1Wenq6tmzZIkkqKytTc3NzSI3X61VycrJdU1paKsuylJqaateMHj1almXZNW3Jz8+3T7FZlqWEhITOPmQAANBNhD0Q7dq1SxdddJHcbrceeOABrV+/XsOGDVNVVZUktXpZbHx8vL2uqqpKPXv2bPUetZNr4uLiWu03Li7OrmnLokWL5Pf77eXQoUNndZwAAKD76vC7zDrLkCFDVF5erpqaGr388suaOnWqSkpK7PUulyuk3hjTqu1kJ9e0Vf9V23G73XK73e09DAAAcB4L+wxRz549deWVV2rUqFHKz8/XN77xDf3nf/6nPB6PJLWaxamurrZnjTwej5qamuTz+U5bc/To0Vb7PXbsWKvZJwAA4ExhD0QnM8aosbFRiYmJ8ng8Ki4uttc1NTWppKREY8aMkSSlpKQoKioqpKayslK7d++2a9LS0uT3+7V9+3a7Ztu2bfL7/XYNAABwtrCeMvvxj3+sm2++WQkJCaqrq1NhYaHefvttFRUVyeVyKTc3V3l5eUpKSlJSUpLy8vLUu3dvZWVlSZIsy9K0adM0f/589e/fX/369dOCBQs0fPhwjR8/XpI0dOhQTZ48WdOnT9fKlSslSTNmzFBGRoaGDBkStmMHAADdR1gD0dGjR5Wdna3KykpZlqURI0aoqKhIEyZMkCQtXLhQ9fX1mjVrlnw+n1JTU7Vx40bFxsba21i+fLkiIyM1ZcoU1dfXa9y4cVqzZo0iIiLsmnXr1iknJ8e+Gy0zM1MFBQVde7AAAKDbchnD44nbo7a2VpZlye/3q0+fPuHuTqdqaGjQPc+XqvCBbykyMuzX2QMA0Gna+/vd7a4hAgAA6GoEIgAA4HgEIgAA4HgEIgAA4HgEIgAA4HgEIgAA4HgEIgAA4HgEIgAA4HgEIgAA4HgEIgAA4HgEIgAA4HgEIgAA4HgEIgAA4HgEIgAA4HgEIkiSgoGAWlpawt0NAADCgkAEAAAcj0AEAAAcj0AEAAAcj0AEAAAcj0AEAAAcj0AEAAAcj0AEAAAcj0AEAAAcj0AEAAAcj0AEAAAcj0AEAAAcj0AESbzLDADgbAQiAADgeAQiAADgeAQiAADgeAQiAADgeAQiAADgeAQiAADgeAQiAADgeAQiAADgeAQiAADgeAQiSJKMMWppaZExJtxdAQCgyxGIIEkywaC+v3q7AoFAuLsCAECXIxDB5oqICHcXAAAICwIRAABwvLAGovz8fF1zzTWKjY1VXFycbrvtNn344YchNcYYLV68WF6vV9HR0Ro7dqz27NkTUtPY2Ki5c+dqwIABiomJUWZmpg4fPhxS4/P5lJ2dLcuyZFmWsrOzVVNTc64PEQAAnAfCGohKSko0e/Zsbd26VcXFxWppadHEiRP1+eef2zVLly7VsmXLVFBQoB07dsjj8WjChAmqq6uza3Jzc7V+/XoVFhZq8+bNOn78uDIyMkKuh8nKylJ5ebmKiopUVFSk8vJyZWdnd+nxAgCA7sllutFtRceOHVNcXJxKSkp0ww03yBgjr9er3NxcPfTQQ5K+mA2Kj4/XE088oZkzZ8rv9+uSSy7Riy++qDvuuEOS9OmnnyohIUGvv/66Jk2apH379mnYsGHaunWrUlNTJUlbt25VWlqa9u/fryFDhrTqS2NjoxobG+3PtbW1SkhIkN/vV58+fbpgNLpOQ0ODpjz9piLdbv1/s9IVGRkZ7i4BANApamtrZVnWV/5+d6triPx+vySpX79+kqSKigpVVVVp4sSJdo3b7VZ6erq2bNkiSSorK1Nzc3NIjdfrVXJysl1TWloqy7LsMCRJo0ePlmVZds3J8vPz7dNrlmUpISGhcw8WAAB0G90mEBlj9OCDD+r6669XcnKyJKmqqkqSFB8fH1IbHx9vr6uqqlLPnj3Vt2/f09bExcW12mdcXJxdc7JFixbJ7/fby6FDh87uAAEAQLfVbc6NzJkzRx988IE2b97cap3L5Qr5bIxp1Xayk2vaqj/ddtxut9xud3u6DgAAznPdYoZo7ty52rBhg9566y0NGjTIbvd4PJLUahanurranjXyeDxqamqSz+c7bc3Ro0db7ffYsWOtZp8AAIDzhDUQGWM0Z84cvfLKK3rzzTeVmJgYsj4xMVEej0fFxcV2W1NTk0pKSjRmzBhJUkpKiqKiokJqKisrtXv3brsmLS1Nfr9f27dvt2u2bdsmv99v1wAAAOcK6ymz2bNn66WXXtJ//dd/KTY21p4JsixL0dHRcrlcys3NVV5enpKSkpSUlKS8vDz17t1bWVlZdu20adM0f/589e/fX/369dOCBQs0fPhwjR8/XpI0dOhQTZ48WdOnT9fKlSslSTNmzFBGRkabd5gBAABnCWsgWrFihSRp7NixIe2rV6/WfffdJ0lauHCh6uvrNWvWLPl8PqWmpmrjxo2KjY2165cvX67IyEhNmTJF9fX1GjdunNasWaOIL72KYt26dcrJybHvRsvMzFRBQcG5PUAAAHBe6FbPIerO2vscg/MRzyECAFyozsvnEAEAAIQDgQi2YCCglpaWcHcDAIAuRyACAACORyACAACORyACAACORyACAACORyACAACORyACAACORyACAACORyACAACORyACAACORyACAACORyACAACORyACAACORyCCjZe7AgCcikAEAAAcj0AEAAAcj0AEAAAcj0AEAAAcj0AEAAAcj0AEAAAcj0AEmzFGLS0tMsaEuysAAHQpAhFsJhjU91dvVyAQCHdXAADoUgQihHBFRIS7CwAAdDkCEQAAcDwCEQAAcDwCEQAAcDwCEQAAcDwCEQAAcDwCEQAAcDwCEQAAcDwCEUIEAwG1tLSEuxsAAHQpAhEAAHA8AhEAAHA8AhEAAHA8AhEAAHA8AhFCcFE1AMCJCEQAAMDxCEQAAMDxwhqI3nnnHd16663yer1yuVx69dVXQ9YbY7R48WJ5vV5FR0dr7Nix2rNnT0hNY2Oj5s6dqwEDBigmJkaZmZk6fPhwSI3P51N2drYsy5JlWcrOzlZNTc05PjoAAHC+CGsg+vzzz/WNb3xDBQUFba5funSpli1bpoKCAu3YsUMej0cTJkxQXV2dXZObm6v169ersLBQmzdv1vHjx5WRkaFAIGDXZGVlqby8XEVFRSoqKlJ5ebmys7PP+fEBAIDzQ2Q4d37zzTfr5ptvbnOdMUZPPfWUHnnkEd1+++2SpN/85jeKj4/XSy+9pJkzZ8rv9+uFF17Qiy++qPHjx0uS1q5dq4SEBG3atEmTJk3Svn37VFRUpK1btyo1NVWS9NxzzyktLU0ffvihhgwZ0jUHCwAAuq1uew1RRUWFqqqqNHHiRLvN7XYrPT1dW7ZskSSVlZWpubk5pMbr9So5OdmuKS0tlWVZdhiSpNGjR8uyLLumLY2NjaqtrQ1ZAADAhanbBqKqqipJUnx8fEh7fHy8va6qqko9e/ZU3759T1sTFxfXavtxcXF2TVvy8/Pta44sy1JCQsJZHQ8AAOi+um0gOsHlcoV8Nsa0ajvZyTVt1X/VdhYtWiS/328vhw4dOsOeAwCA80W3DUQej0eSWs3iVFdX27NGHo9HTU1N8vl8p605evRoq+0fO3as1ezTl7ndbvXp0ydkcQIezAgAcKJuG4gSExPl8XhUXFxstzU1NamkpERjxoyRJKWkpCgqKiqkprKyUrt377Zr0tLS5Pf7tX37drtm27Zt8vv9dg0AAHC2sN5ldvz4cf31r3+1P1dUVKi8vFz9+vXT4MGDlZubq7y8PCUlJSkpKUl5eXnq3bu3srKyJEmWZWnatGmaP3+++vfvr379+mnBggUaPny4fdfZ0KFDNXnyZE2fPl0rV66UJM2YMUMZGRncYQYAACSFORC99957uvHGG+3PDz74oCRp6tSpWrNmjRYuXKj6+nrNmjVLPp9Pqamp2rhxo2JjY+3vLF++XJGRkZoyZYrq6+s1btw4rVmzRhEREXbNunXrlJOTY9+NlpmZecpnHzmdMUYtLS3tulYLAIALhcsYY8LdifNBbW2tLMuS3++/4K4namho0JSn31QwGFQwEFDPXr30f3PGKTIyrHkZAICz1t7f7257DRHCx/Wl2TUAAJyAQAQAAByPQAQAAByPQAQAAByPQIRWeDgjAMBpCEQAAMDxCEQAAMDxCERohVNmAACnIRABAADHIxDBflUHAABORSBCK19+nxkAAE5AIEIrJhjU91dvVyAQCHdXAADoEgQitMlIXFgNAHAMAhHaxGkzAICTEIjQJhMM6t7nSzltBgBwBAIRTskVERHuLgAA0CUIRGhTMBBQoKWF64gAAI5AIHK4E9cKAQDgZJHh7gDCKxAIKHvlZnHpNADAyZghcriWlha5evDXAADgbPwS4pS49R4A4BQEIpwSt94DAJyCQIRTCgYCCnLRNQDAAQhEDscpMQAACEQAAAAEIpyeMUYNDQ1qbm4Od1cAADhnCEQO1p6HMgaamzWVC6sBABc4HszoYO19KCPvNAMAXOiYIXK4HoQdAAAIRPhqzY2NOn78OHejAQAuWAQifCUTDOr7v96mzz//nFAEALggEYgc7IyeQeRy6Z6Vm9XY2HhuOwUAQBgQiNAuwUBAxuXiQY4AgAsSgQjtFmhuVtaKdzh1BgC44BCIHKwjsz3BYFD3rPqzGhsbCUUAgAsGgQhnrKW5Wf/nqWL5/X5CEQDggkAgQse4XJr6fKkaGhq4rggAcN4jEKFDgoGAAsGg/H6/pvzqbV7tAQA4rxGIHOrES1vPZmbHBIOa9uttCgQCZ70tAADCiUDkUIFAQFNX/fmsQ4wrIkKB5mbdWfCWjh49qtraWtXX16u5uZmABAA4bzgqED3zzDNKTExUr169lJKSonfffTfcXQqLE7NDrh6d+MfvcukHa3aotrZW33uqWP/6ZJGqqqpUW1urpqYmAhIAoFtzGYf8Sv3+979Xdna2nnnmGV133XVauXKlnn/+ee3du1eDBw/+yu/X1tbKsiz5/X716dOnC3p87rS0tOhfnyxSIBCQq0cPuVwue12wg20nPisYlOt/XxgbaGpSRFSUZIx6REbqNz9Ik9vtVmRkpFwulyIjI7+oCwTUo0cPBYNB+38jIiJC9gcAQEe09/fbMYEoNTVVV199tVasWGG3DR06VLfddpvy8/O/8vvneyAyxth3gzU2NuruZ99VS3Nzpwei09WYQMBu6xERoRdnXi9JunfVn7Xi7m/qh+vKtXraaM1YV651M66zZ5ROBKcvc7lcioiIsENUIBCw60+sa6vt5LBljFEgELDbTnxub0A7+fvt/bM40++EY5sAcCEgEH1JU1OTevfurT/84Q/613/9V7t93rx5Ki8vV0lJSavvNDY2hry3y+/3a/DgwTp06FCnB6KWlpZO3V5b229oaNAPnt8sEwxKklw9ImQCAemkENPRto58zwT/9840IxkZ9YiIlAkG5OoRoUBz0xfBKTJSJhhUsKUlJFy5IiL05P9J1vz/u1v/eec3lfPSTrl69JAJBhURFaWn7xqpWb/dLlePHgo2NyvC7daz916ruYXv69fTrrdDVkNDg37w6y16/v4xioyMVENDg2ate0+rpo7W9NWlWpF9jWa/VKYX7r/OPoYvB7SWlhZN+/Wf9cL919ntJ/482wpyX/7OyntTFRkZ2e7vffn77ekHAJxPztW/u2pra5WQkKCamhpZlnXqQuMAR44cMZLMn//855D2xx9/3Hzta19r8zuPPvqokcTCwsLCwsJyASyHDh06bVZw1H9KnnwqwRhzytMLixYt0oMPPmh/DgaD+sc//qH+/ftfcKckTqTnczH75SSMY+dgHDsH49g5GMfOEc5xNMaorq5OXq/3tHWOCEQDBgxQRESEqqqqQtqrq6sVHx/f5nfcbrfcbndI28UXX3yuutgt9OnTh3/gOwHj2DkYx87BOHYOxrFzhGscT3uq7H854rb7nj17KiUlRcXFxSHtxcXFGjNmTJh6BQAAugtHzBBJ0oMPPqjs7GyNGjVKaWlpWrVqlQ4ePKgHHngg3F0DAABh5phAdMcdd+izzz7TY489psrKSiUnJ+v111/XZZddFu6uhZ3b7dajjz7a6hQhzgzj2DkYx87BOHYOxrFznA/j6Ijb7gEAAE7HEdcQAQAAnA6BCAAAOB6BCAAAOB6BCAAAOB6BCHrmmWeUmJioXr16KSUlRe+++264u9Ql8vPzdc011yg2NlZxcXG67bbb9OGHH4bUGGO0ePFieb1eRUdHa+zYsdqzZ09ITWNjo+bOnasBAwYoJiZGmZmZOnz4cEiNz+dTdna2LMuSZVnKzs5WTU1NSM3Bgwd16623KiYmRgMGDFBOTo6amprOybGfK/n5+XK5XMrNzbXbGMP2O3LkiO655x71799fvXv31je/+U2VlZXZ6xnL02tpadFPfvITJSYmKjo6WldccYUee+wxBf/3HY4SY9iWd955R7feequ8Xq9cLpdeffXVkPXdbcx27dql9PR0RUdH69JLL9Vjjz2mTrk/7CxfE4bzXGFhoYmKijLPPfec2bt3r5k3b56JiYkxn3zySbi7ds5NmjTJrF692uzevduUl5ebW265xQwePNgcP37crlmyZImJjY01L7/8stm1a5e54447zMCBA01tba1d88ADD5hLL73UFBcXm507d5obb7zRfOMb3zAtLS12zeTJk01ycrLZsmWL2bJli0lOTjYZGRn2+paWFpOcnGxuvPFGs3PnTlNcXGy8Xq+ZM2dO1wxGJ9i+fbu5/PLLzYgRI8y8efPsdsawff7xj3+Yyy67zNx3331m27ZtpqKiwmzatMn89a9/tWsYy9P7+c9/bvr3729ee+01U1FRYf7whz+Yiy66yDz11FN2DWPY2uuvv24eeeQR8/LLLxtJZv369SHru9OY+f1+Ex8fb+68806za9cu8/LLL5vY2Fjzi1/84qzHgUDkcNdee6154IEHQtquuuoq8/DDD4epR+FTXV1tJJmSkhJjjDHBYNB4PB6zZMkSu6ahocFYlmWeffZZY4wxNTU1JioqyhQWFto1R44cMT169DBFRUXGGGP27t1rJJmtW7faNaWlpUaS2b9/vzHmi38h9ejRwxw5csSu+d3vfmfcbrfx+/3n7qA7SV1dnUlKSjLFxcUmPT3dDkSMYfs99NBD5vrrrz/lesbyq91yyy3m/vvvD2m7/fbbzT333GOMYQzb4+RA1N3G7JlnnjGWZZmGhga7Jj8/33i9XhMMBs/q2Dll5mBNTU0qKyvTxIkTQ9onTpyoLVu2hKlX4eP3+yVJ/fr1kyRVVFSoqqoqZHzcbrfS09Pt8SkrK1Nzc3NIjdfrVXJysl1TWloqy7KUmppq14wePVqWZYXUJCcnh7x8cNKkSWpsbAw5ZdJdzZ49W7fccovGjx8f0s4Ytt+GDRs0atQofe9731NcXJxGjhyp5557zl7PWH6166+/Xm+88YY++ugjSdJf/vIXbd68Wd/+9rclMYYd0d3GrLS0VOnp6SEPeJw0aZI+/fRT/e1vfzurY3XMk6rR2t///ncFAoFWL7iNj49v9SLcC50xRg8++KCuv/56JScnS5I9Bm2NzyeffGLX9OzZU3379m1Vc+L7VVVViouLa7XPuLi4kJqT99O3b1/17Nmz2/9ZFBYWaufOndqxY0erdYxh+3388cdasWKFHnzwQf34xz/W9u3blZOTI7fbrXvvvZexbIeHHnpIfr9fV111lSIiIhQIBPT444/rrrvuksTfx47obmNWVVWlyy+/vNV+TqxLTEzsyGFKIhBBksvlCvlsjGnVdqGbM2eOPvjgA23evLnVuo6Mz8k1bdV3pKa7OXTokObNm6eNGzeqV69ep6xjDL9aMBjUqFGjlJeXJ0kaOXKk9uzZoxUrVujee++16xjLU/v973+vtWvX6qWXXtLXv/51lZeXKzc3V16vV1OnTrXrGMMz153GrK2+nOq7Z4JTZg42YMAARUREtPqvlerq6lYp/UI2d+5cbdiwQW+99ZYGDRpkt3s8Hkk67fh4PB41NTXJ5/Odtubo0aOt9nvs2LGQmpP34/P51Nzc3K3/LMrKylRdXa2UlBRFRkYqMjJSJSUl+uUvf6nIyMiQ/3L7MsawtYEDB2rYsGEhbUOHDtXBgwcl8fexPf7t3/5NDz/8sO68804NHz5c2dnZ+tGPfqT8/HxJjGFHdLcxa6umurpaUutZrDNFIHKwnj17KiUlRcXFxSHtxcXFGjNmTJh61XWMMZozZ45eeeUVvfnmm62mWhMTE+XxeELGp6mpSSUlJfb4pKSkKCoqKqSmsrJSu3fvtmvS0tLk9/u1fft2u2bbtm3y+/0hNbt371ZlZaVds3HjRrndbqWkpHT+wXeScePGadeuXSovL7eXUaNG6e6771Z5ebmuuOIKxrCdrrvuulaPffjoo4/sF1Dz9/Gr/fOf/1SPHqE/axEREfZt94zhmetuY5aWlqZ33nkn5Fb8jRs3yuv1tjqVdsbO6pJsnPdO3Hb/wgsvmL1795rc3FwTExNj/va3v4W7a+fcD3/4Q2NZlnn77bdNZWWlvfzzn/+0a5YsWWIsyzKvvPKK2bVrl7nrrrvavN100KBBZtOmTWbnzp3mpptuavN20xEjRpjS0lJTWlpqhg8f3ubtpuPGjTM7d+40mzZtMoMGDeqWt+h+lS/fZWYMY9he27dvN5GRkebxxx83Bw4cMOvWrTO9e/c2a9eutWsYy9ObOnWqufTSS+3b7l955RUzYMAAs3DhQruGMWytrq7OvP/+++b99983ksyyZcvM+++/bz9+pTuNWU1NjYmPjzd33XWX2bVrl3nllVdMnz59uO0eneNXv/qVueyyy0zPnj3N1Vdfbd92fqGT1OayevVquyYYDJpHH33UeDwe43a7zQ033GB27doVsp36+nozZ84c069fPxMdHW0yMjLMwYMHQ2o+++wzc/fdd5vY2FgTGxtr7r77buPz+UJqPvnkE3PLLbeY6Oho069fPzNnzpyQW0vPFycHIsaw/f77v//bJCcnG7fbba666iqzatWqkPWM5enV1taaefPmmcGDB5tevXqZK664wjzyyCOmsbHRrmEMW3vrrbfa/Hfh1KlTjTHdb8w++OAD861vfcu43W7j8XjM4sWLz/qWe2OMcRnTGY93BAAAOH9xDREAAHA8AhEAAHA8AhEAAHA8AhEAAHA8AhEAAHA8AhEAAHA8AhEAAHA8AhEAAHA8AhGAbm3s2LHKzc3t8PfffvttuVwu1dTUdFqfAFx4CEQAAMDxCEQAAMDxCEQAur2WlhbNmTNHF198sfr376+f/OQnOvEaxrVr12rUqFGKjY2Vx+NRVlaWqqurT7mtzz77THfddZcGDRqk3r17a/jw4frd734XUjN27Fjl5ORo4cKF6tevnzwejxYvXhxSU1NToxkzZig+Pl69evVScnKyXnvtNXv9li1bdMMNNyg6OloJCQnKycnR559/3nmDAqBTEYgAdHu/+c1vFBkZqW3btumXv/ylli9frueff16S1NTUpJ/97Gf6y1/+oldffVUVFRW67777TrmthoYGpaSk6LXXXtPu3bs1Y8YMZWdna9u2ba32GRMTo23btmnp0qV67LHHVFxcLEkKBoO6+eabtWXLFq1du1Z79+7VkiVLFBERIUnatWuXJk2apNtvv10ffPCBfv/732vz5s2aM2fOuRkgAGeNt90D6NbGjh2r6upq7dmzRy6XS5L08MMPa8OGDdq7d2+r+h07dujaa69VXV2dLrroIr399tu68cYb5fP5dPHFF7e5j1tuuUVDhw7VL37xC3ufgUBA7777rl1z7bXX6qabbtKSJUu0ceNG3Xzzzdq3b5++9rWvtdrevffeq+joaK1cudJu27x5s9LT0/X555+rV69eZzMkAM4BZogAdHujR4+2w5AkpaWl6cCBAwoEAnr//ff1ne98R5dddpliY2M1duxYSdLBgwfb3FYgENDjjz+uESNGqH///rrooou0cePGVvUjRowI+Txw4ED7VFx5ebkGDRrUZhiSpLKyMq1Zs0YXXXSRvUyaNEnBYFAVFRUdHQYA51BkuDsAAB3V0NCgiRMnauLEiVq7dq0uueQSHTx4UJMmTVJTU1Ob33nyySe1fPlyPfXUUxo+fLhiYmKUm5vbqj4qKirks8vlUjAYlCRFR0eftl/BYFAzZ85UTk5Oq3WDBw8+k0ME0EUIRAC6va1bt7b6nJSUpP379+vvf/+7lixZooSEBEnSe++9d9ptvfvuu/rOd76je+65R9IX4eXAgQMaOnRou/szYsQIHT58WB999FGbs0RXX3219uzZoyuvvLLd2wQQXpwyA9DtHTp0SA8++KA+/PBD/e53v9PTTz+tefPmafDgwerZs6eefvppffzxx9qwYYN+9rOfnXZbV155pYqLi7Vlyxbt27dPM2fOVFVV1Rn1Jz09XTfccIO++93vqri4WBUVFfrjH/+ooqIiSdJDDz2k0tJSzZ49W+Xl5Tpw4IA2bNiguXPndngMAJxbBCIA3d69996r+vp6XXvttZo9e7bmzp2rGTNm6JJLLtGaNWv0hz/8QcOGDdOSJUvsC6NP5ac//amuvvpqTZo0SWPHjpXH49Ftt912xn16+eWXdc011+iuu+7SsGHDtHDhQgUCAUlfzCCVlJTowIED+ta3vqWRI0fqpz/9qQYOHNiRwwfQBbjLDAAAOB4zRAAAwPEIRAAAwPEIRAAAwPEIRAAAwPEIRAAAwPEIRAAAwPEIRAAAwPEIRAAAwPEIRAAAwPEIRAAAwPEIRAAAwPH+f/uNOl+Nrq2sAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.histplot(bank['balance'])\n"
]
},
{
"cell_type": "code",
"execution_count": 84,
"id": "0169927a",