-
Notifications
You must be signed in to change notification settings - Fork 1
/
nanodet_openvino.cpp
276 lines (238 loc) · 8.83 KB
/
nanodet_openvino.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#include "nanodet_openvino.h"
inline float fast_exp(float x)
{
union {
uint32_t i;
float f;
} v{};
v.i = (1 << 23) * (1.4426950409 * x + 126.93490512f);
return v.f;
}
inline float sigmoid(float x)
{
return 1.0f / (1.0f + fast_exp(-x));
}
template<typename _Tp>
int activation_function_softmax(const _Tp* src, _Tp* dst, int length)
{
const _Tp alpha = *std::max_element(src, src + length);
_Tp denominator{ 0 };
for (int i = 0; i < length; ++i)
{
dst[i] = fast_exp(src[i] - alpha);
denominator += dst[i];
}
for (int i = 0; i < length; ++i)
{
dst[i] /= denominator;
}
return 0;
}
static void generate_grid_center_priors(const int input_height, const int input_width, std::vector<int>& strides, std::vector<CenterPrior>& center_priors)
{
for (int i = 0; i < (int)strides.size(); i++)
{
int stride = strides[i];
int feat_w = ceil((float)input_width / stride);
int feat_h = ceil((float)input_height / stride);
for (int y = 0; y < feat_h; y++)
{
for (int x = 0; x < feat_w; x++)
{
CenterPrior ct;
ct.x = x;
ct.y = y;
ct.stride = stride;
center_priors.push_back(ct);
}
}
}
}
NanoDet::NanoDet(const char* model_path, const char* device, const int precision)
{
InferenceEngine::Core ie;
InferenceEngine::CNNNetwork model = ie.ReadNetwork(model_path);
// prepare input settings
InferenceEngine::InputsDataMap inputs_map(model.getInputsInfo());
input_name_ = inputs_map.begin()->first;
InferenceEngine::InputInfo::Ptr input_info = inputs_map.begin()->second;
if(precision == 32) {
input_info->setPrecision(InferenceEngine::Precision::FP32);
}
else if(precision == 16) {
input_info->setPrecision(InferenceEngine::Precision::FP16);
}
//input_info->setPrecision(InferenceEngine::Precision::FP32);
//input_info->setLayout(InferenceEngine::Layout::NCHW);
//prepare output settings
InferenceEngine::OutputsDataMap outputs_map(model.getOutputsInfo());
for (auto &output_info : outputs_map)
{
//std::cout<< "Output:" << output_info.first <<std::endl;
if(precision == 32) {
output_info.second->setPrecision(InferenceEngine::Precision::FP32);
}
else if(precision == 16) {
output_info.second->setPrecision(InferenceEngine::Precision::FP16);
}
// output_info.second->setPrecision(InferenceEngine::Precision::FP32);
}
//get network
std::cout << "init" << std::endl;
network_ = ie.LoadNetwork(model, device);// we added to use NCS2
infer_request_ = network_.CreateInferRequest();
}
NanoDet::~NanoDet()
{
}
void NanoDet::preprocess(cv::Mat& image, InferenceEngine::Blob::Ptr& blob)
{
int img_w = image.cols;
int img_h = image.rows;
int channels = 3;
InferenceEngine::MemoryBlob::Ptr mblob = InferenceEngine::as<InferenceEngine::MemoryBlob>(blob);
if (!mblob)
{
THROW_IE_EXCEPTION << "We expect blob to be inherited from MemoryBlob in matU8ToBlob, "
<< "but by fact we were not able to cast inputBlob to MemoryBlob";
}
// locked memory holder should be alive all time while access to its buffer happens
auto mblobHolder = mblob->wmap();
float *blob_data = mblobHolder.as<float *>();
for (size_t c = 0; c < channels; c++)
{
for (size_t h = 0; h < img_h; h++)
{
for (size_t w = 0; w < img_w; w++)
{
blob_data[c * img_w * img_h + h * img_w + w] =
(float)image.at<cv::Vec3b>(h, w)[c];
}
}
}
}
std::vector<BoxInfo> NanoDet::detect(cv::Mat image, float score_threshold, float nms_threshold)
{
//auto start = std::chrono::steady_clock::now();
InferenceEngine::Blob::Ptr input_blob = infer_request_.GetBlob(input_name_);
preprocess(image, input_blob);
// do inference
infer_request_.Infer();
// get output
std::vector<std::vector<BoxInfo>> results;
results.resize(this->num_class);
{
const InferenceEngine::Blob::Ptr pred_blob = infer_request_.GetBlob(output_name_);
auto m_pred = InferenceEngine::as<InferenceEngine::MemoryBlob>(pred_blob);
auto m_pred_holder = m_pred->rmap();
const float *pred = m_pred_holder.as<const float *>();
// generate center priors in format of (x, y, stride)
std::vector<CenterPrior> center_priors;
generate_grid_center_priors(this->input_size[0], this->input_size[1], this->strides, center_priors);
this->decode_infer(pred, center_priors, score_threshold, results);
}
std::vector<BoxInfo> dets;
for (int i = 0; i < (int)results.size(); i++)
{
this->nms(results[i], nms_threshold);
for (auto& box : results[i])
{
dets.push_back(box);
}
}
//auto end = std::chrono::steady_clock::now();
//double time = std::chrono::duration<double, std::milli>(end - start).count();
//std::cout << "inference time:" << time << "ms" << std::endl;
return dets;
}
void NanoDet::decode_infer(const float*& pred, std::vector<CenterPrior>& center_priors, float threshold, std::vector<std::vector<BoxInfo>>& results)
{
const int num_points = center_priors.size();
const int num_channels = num_class + (reg_max + 1) * 4;
//printf("num_points:%d\n", num_points);
//cv::Mat debug_heatmap = cv::Mat::zeros(feature_h, feature_w, CV_8UC3);
for (int idx = 0; idx < num_points; idx++)
{
const int ct_x = center_priors[idx].x;
const int ct_y = center_priors[idx].y;
const int stride = center_priors[idx].stride;
float score = 0;
int cur_label = 0;
for (int label = 0; label < num_class; label++)
{
if (pred[idx * num_channels +label] > score)
{
score = pred[idx * num_channels + label];
cur_label = label;
}
}
if (score > threshold)
{
//std::cout << row << "," << col <<" label:" << cur_label << " score:" << score << std::endl;
const float* bbox_pred = pred + idx * num_channels + num_class;
results[cur_label].push_back(this->disPred2Bbox(bbox_pred, cur_label, score, ct_x, ct_y, stride));
//debug_heatmap.at<cv::Vec3b>(row, col)[0] = 255;
//cv::imshow("debug", debug_heatmap);
}
}
}
BoxInfo NanoDet::disPred2Bbox(const float*& dfl_det, int label, float score, int x, int y, int stride)
{
float ct_x = x * stride;
float ct_y = y * stride;
std::vector<float> dis_pred;
dis_pred.resize(4);
for (int i = 0; i < 4; i++)
{
float dis = 0;
float* dis_after_sm = new float[reg_max + 1];
activation_function_softmax(dfl_det + i * (reg_max + 1), dis_after_sm, reg_max + 1);
for (int j = 0; j < reg_max + 1; j++)
{
dis += j * dis_after_sm[j];
}
dis *= stride;
//std::cout << "dis:" << dis << std::endl;
dis_pred[i] = dis;
delete[] dis_after_sm;
}
float xmin = (std::max)(ct_x - dis_pred[0], .0f);
float ymin = (std::max)(ct_y - dis_pred[1], .0f);
float xmax = (std::min)(ct_x + dis_pred[2], (float)this->input_size[1]);
float ymax = (std::min)(ct_y + dis_pred[3], (float)this->input_size[0]);
//std::cout << xmin << "," << ymin << "," << xmax << "," << xmax << "," << std::endl;
return BoxInfo { xmin, ymin, xmax, ymax, score, label };
}
void NanoDet::nms(std::vector<BoxInfo>& input_boxes, float NMS_THRESH)
{
std::sort(input_boxes.begin(), input_boxes.end(), [](BoxInfo a, BoxInfo b) { return a.score > b.score; });
std::vector<float> vArea(input_boxes.size());
for (int i = 0; i < int(input_boxes.size()); ++i)
{
vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1)
* (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
}
for (int i = 0; i < int(input_boxes.size()); ++i)
{
for (int j = i + 1; j < int(input_boxes.size());)
{
float xx1 = (std::max)(input_boxes[i].x1, input_boxes[j].x1);
float yy1 = (std::max)(input_boxes[i].y1, input_boxes[j].y1);
float xx2 = (std::min)(input_boxes[i].x2, input_boxes[j].x2);
float yy2 = (std::min)(input_boxes[i].y2, input_boxes[j].y2);
float w = (std::max)(float(0), xx2 - xx1 + 1);
float h = (std::max)(float(0), yy2 - yy1 + 1);
float inter = w * h;
float ovr = inter / (vArea[i] + vArea[j] - inter);
if (ovr >= NMS_THRESH)
{
input_boxes.erase(input_boxes.begin() + j);
vArea.erase(vArea.begin() + j);
}
else
{
j++;
}
}
}
}