-
Notifications
You must be signed in to change notification settings - Fork 2
/
md-v3.f90
430 lines (369 loc) · 12.2 KB
/
md-v3.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
module precision
implicit none
save
integer, parameter :: ip = selected_int_kind(15)
integer, parameter :: dp = selected_real_kind(15)
end module precision
module param
use precision
implicit none
integer(ip) :: npartdim, natom, nstep, istep
real(dp) :: tempK, dt, boxl(3), alat, mass
real(dp) :: avtemp, ke, kb, epsilon, sigma, scale
real(dp),dimension(3,4) :: rcell = reshape( (/ &
0.0D+00, 0.0D+00, 0.0D+00, &
0.5D+00, 0.5D+00, 0.0D+00, &
0.0D+00, 0.5D+00, 0.5D+00, &
0.5D+00, 0.0D+00, 0.5D+00 /), (/ 3, 4 /) )
character(len=2) :: pot
end module param
module potential
use precision
implicit none
real(dp) :: r2, r6, d2, d
real(dp), parameter :: de = 0.176d0, a = 1.4d0, re = 1d0
real(dp) :: exparre
contains
subroutine lennard_jones(r,f,p)
! Lennard Jones Potential
! V = 4 * epsilon * [ (sigma/r)**12 - (sigma/r)**6 ]
! = 4 * epsilon * (sigma/r)**6 * [ (sigma/r)**2 - 1 ]
! = 4 * r**(-6) * [ r**(-2) - 1 ] for epsilon=sigma=1
! F_i = 48 * epsilon * (sigma/r)**6 * (1/r**2) * [ ( sigma/r)** 6 - 0.5 ] * i where i = x,y,z
! = 48 * r**(-8) * [ r**(-6) - 0.5 ] * i for epsilon=sigma=1 implicit none
implicit none
real(dp), dimension(:), intent(in) :: r
real(dp), dimension(:), intent(out) :: f
real(dp), intent(out) :: p
r2 = 1.d0 / dot_product(r,r)
r6 = r2 ** 3
f = dvdr_lj(r2, r6) * r
p = pot_lj(r2, r6)
end subroutine lennard_jones
subroutine morse(r,f,p)
! Morse Potential
! V = D * [ 1 - exp(-a*(r - re)) ]^2
! F_i = 2*D * [ 1 - exp(-a*(r - re)) ] * a exp(-a*(r-re)) * i / r
implicit none
real(dp), dimension(:), intent(in) :: r
real(dp), dimension(:), intent(out) :: f
real(dp), intent(out) :: p
d2 = dot_product(r,r)
d = sqrt(d2)
exparre = exp( -a * (d - re ))
f = dvdr_mp(exparre) * r
p = pot_mp(exparre)
end subroutine morse
function pot_lj(r2, r6)
implicit none
real(dp), intent(in) :: r2, r6
real(dp) :: pot_lj
pot_lj = 4d0 * r6 * ( r6 - 1.d0 )
end function pot_lj
function pot_mp(exparre)
implicit none
real(dp), intent(in) :: exparre
real(dp) :: pot_mp
pot_mp = de * ( 1d0 - exparre )**2
end function pot_mp
function dvdr_lj(r2,r6)
implicit none
real(dp), intent(in) :: r2, r6
real(dp) :: dvdr_lj
dvdr_lj = 48d0 * r2 * r6 * ( r6 - 0.5d0 )
end function dvdr_lj
function dvdr_mp(exparre)
implicit none
real(dp), intent(in) :: exparre
real(dp) :: dvdr_mp
dvdr_mp = 2d0 * de * a * (1d0 - exparre) * exparre
end function dvdr_mp
end module potential
program md
! Molecular Dynamics code for equilibration of Liquid Argon
! Author: Alex Pacheco
! Date : Jan 30, 2014
! This program simulates the equilibration of Liquid Argon
! starting from a FCC crystal structure using Lennard-Jones
! potential and velocity verlet algorithm
! See md-orig.f90 for more details about this program
! Disclaimer:
! This is code can be used as an introduction to molecular dynamics. There are lot more
! concepts in MD that are not covered here.
! Parameters:
! npartdim : number of unit cells, uniform in all directions. change to nonuniform if you desire
! natom : number of atoms
! nstep : nummber of simulation time steps
! tempK : equilibration temperature
! dt : simulation time steps
! boxl : length of simulation box in all directions
! alat : lattice constant for fcc crystal
! kb : boltzmann constant, set to 1 for simplicity
! mass : mass of Ar atom, set to 1 for simplicity
! epsilon, sigma : LJ parameters, set to 1 for simplicity
! rcell : FCC unit cell
! coord, coord_t0 : nuclear positions for each step, current and initial
! vel, vel_t0 : nuclear velocities for each step
! acc, acc_t0 : nuclear acceleration for each step
! force, pener : force and potential energy at current step
! avtemp : average temperature at current time step
! scale : scaling factor to set current temperature to desired temperature
! gasdev : Returns a normally distributed deviate with zero mean and unit variance from Numerical recipes
use precision
use param
implicit none
integer(ip) :: n, i, j, k, l
real(dp), dimension(:,:), allocatable :: coord_t0, vel_t0, acc_t0
real(dp), dimension(:,:), allocatable :: coord, vel, acc, force
real(dp) :: pener
! For timing analysis
real(dp) :: init_time, start_time, end_time
integer, dimension(8) :: value
interface
subroutine initialize(coord_t0, vel_t0, acc_t0)
use precision
implicit none
real(dp), dimension(:,:), intent(out) :: coord_t0, vel_t0, acc_t0
end subroutine initialize
subroutine verlet(coord, coord_t0, vel, vel_t0, acc, acc_t0, force, pener)
use precision
implicit none
real(dp), dimension(:,:), intent(in) :: coord_t0, vel_t0, acc_t0
real(dp), dimension(:,:), intent(out) :: coord, vel, acc, force
real(dp), intent(out) :: pener
end subroutine verlet
subroutine linearmom(vel)
use precision
implicit none
real(dp), dimension(:,:), intent(in) :: vel
end subroutine linearmom
subroutine get_temp(vel)
use precision
implicit none
real(dp), dimension(:,:), intent(in) :: vel
end subroutine get_temp
end interface
! Namelist for reading input
namelist/moldyn/natom,npartdim,nstep,tempK,dt,pot
! Format statements
1000 format(i8)
1100 format(a,2x,3f12.6)
1200 format(a,2x,e15.8)
1300 format(a,2x,i8,2x,e15.8,1x,e15.8)
alat = 2d0 ** (2d0/3d0)
kb = 1.d0
mass = 1.d0
epsilon = 1.d0
sigma = 1.d0
! Set default values
natom = 0
npartdim = 0
nstep = 1
tempK = 10d0
dt = 0.001d0
pot="lj"
read(5,nml=moldyn)
if( natom > 0 ) then
npartdim = ( natom / 4.d0 ) ** ( 1.d0 / 3.d0 )
else if ( npartdim > 0 ) then
natom = 4.d0 * npartdim ** 3
else
print *, 'Invalid input: no atom in simulation box'
stop
end if
write(6,'(a)') 'Input Parameters:'
write(6,nml=moldyn)
boxl = npartdim * alat
! Allocate arrays
allocate(coord(natom,3), coord_t0(natom,3))
allocate(vel(natom,3), vel_t0(natom,3))
allocate(acc(natom,3), acc_t0(natom,3))
allocate(force(natom,3))
!=================================================
! Initialize coordinates and random velocities
!=================================================
call date_and_time(VALUES=value)
init_time = real(value(5)*3600,dp) + real(value(6)*60,dp) + real(value(7),dp) + real(value(8),dp)/1000d0
call initialize(coord_t0, vel_t0, acc_t0)
open(unit=1,file='atom.xyz',status='unknown')
write(1,1000) natom
write(1,*)
do i = 1, natom
write(1,1100) 'Ar', coord_t0(i,1), coord_t0(i,2), coord_t0(i,3)
end do
! Set Linear Momentum to zero
call linearmom(vel_t0)
! get current temperature
call get_temp(vel_t0)
print 1200, 'Initial Average Temperature: ', avtemp
! scale initial velocity to desired temperature
scale = sqrt( tempK / avtemp )
vel_t0 = vel_t0 * scale
call get_temp(vel_t0)
print 1200, 'Initial Scaled Average Temperature: ', avtemp
call date_and_time(VALUES=value)
start_time = real(value(5)*3600,dp) + real(value(6)*60,dp) + real(value(7),dp) + real(value(8),dp)/1000d0
!=================================================
! MD Simulation
!=================================================
do istep = 1, nstep
! Get new atom positions from Velocity Verlet Algorithm
call verlet(coord, coord_t0, vel, vel_t0, acc, acc_t0, force, pener)
! Set Linear Momentum to zero
call linearmom(vel)
! compute average temperature
call get_temp(vel)
print 1300, 'Average Temperature: ' , istep, avtemp, pener
scale = sqrt ( tempk / avtemp )
! Reset for next time step
coord_t0 = coord
acc_t0 = acc
! scale velocity to desired temperature
vel_t0 = vel * scale
! Write current coordinates to xyz file for visualization
write(1,1000) natom
write(1,*)
do i = 1, natom
write(1,1100) 'Ar', coord_t0(i,1), coord_t0(i,2), coord_t0(i,3)
end do
end do
close(1)
deallocate(coord_t0,vel_t0,acc_t0,coord,vel,acc,force)
call date_and_time(VALUES=value)
end_time = real(value(5)*3600,dp) + real(value(6)*60,dp) + real(value(7),dp) + real(value(8),dp)/1000d0
write(6,'(a,f12.3,/,a,f12.3)') 'Init Time: ', start_time - init_time, &
'Sim Time: ', end_time - start_time
end program md
subroutine initialize(coord_t0, vel_t0, acc_t0)
use precision
use param, only : natom, npartdim, alat, rcell
implicit none
real(dp), dimension(:,:), intent(out) :: coord_t0, vel_t0, acc_t0
integer(ip) :: n, i, j, k, l
! Set initial coordinates, velocity and acceleration to zero
coord_t0 = 0d0 ; vel_t0 = 0d0 ; acc_t0 = 0d0
! Create FCC unit cell
rcell = rcell * alat
! Create a FCC crystal structure
n = 1
do i = 1, npartdim
do j = 1, npartdim
do k = 1, npartdim
do l = 1, 4
coord_t0(n,1) = alat * real(i - 1, dp) + rcell(1,l)
coord_t0(n,2) = alat * real(j - 1, dp) + rcell(2,l)
coord_t0(n,3) = alat * real(k - 1, dp) + rcell(3,l)
n = n + 1
end do
end do
end do
end do
! Assign initial random velocities
do i = 1, natom
do j = 1, 3
vel_t0(i,j) = gasdev()
end do
end do
contains
function gasdev()
use precision
implicit none
real(dp) :: gasdev
real(dp) :: v1, v2, fac, rsq
real(dp), save :: gset
logical, save :: available = .false.
if (available) then
gasdev = gset
available = .false.
else
do
call random_number(v1)
call random_number(v2)
v1 = 2.d0 * v1 - 1.d0
v2 = 2.d0 * v2 - 1.d0
rsq = v1**2 + v2**2
if ( rsq > 0.d0 .and. rsq < 1.d0 ) exit
end do
fac = sqrt(-2.d0 * log(rsq) / rsq)
gasdev = v1 * fac
gset = v2 * fac
available = .true.
end if
end function gasdev
end subroutine initialize
subroutine verlet(coord, coord_t0, vel, vel_t0, acc, acc_t0, force, pener)
use precision
use potential
use param, only : natom, mass, dt, boxl, pot
implicit none
real(dp), dimension(:,:), intent(in) :: coord_t0, vel_t0, acc_t0
real(dp), dimension(:,:), intent(out) :: coord, vel, acc, force
real(dp), intent(out) :: pener
integer(ip) :: i, j, k
real(dp) :: epot
real(dp) :: r(3), f(3)
! Set coordinates, velocity, acceleration and force at next time step to zero
coord = 0d0 ; vel = 0d0 ; acc = 0d0 ; force = 0d0
pener = 0d0
! Get new atom positions from Velocity Verlet Algorithm
coord = coord_t0 + vel_t0 * dt + 0.5d0 * acc_t0 * dt ** 2
do i = 1, natom
! Apply PBC to coordinates
where ( coord(i,:) > boxl(:) )
coord(i,:) = coord(i,:) - boxl(:)
elsewhere ( coord(i,:) < 0d0 )
coord(i,:) = coord(i,:) + boxl(:)
end where
end do
! Get force at new atom positions
do i = 1, natom - 1
do j = i + 1, natom
r(:) = coord(i,:) - coord(j,:)
! minimum image criterion
r = r - nint( r / boxl ) * boxl
select case(pot)
case('mp')
call morse( r, f, epot )
case default
call lennard_jones( r, f, epot )
end select
pener = pener + epot
force(i,:) = force(i,:) + f(:)
force(j,:) = force(j,:) - f(:)
end do
end do
! Calculate Acceleration and Velocity at current time step
acc = force / mass
vel = vel_t0 + 0.5d0 * ( acc + acc_t0 ) * dt
end subroutine verlet
subroutine linearmom(vel)
use precision
use param, only : natom
implicit none
real(dp), dimension(:,:), intent(inout) :: vel
integer(ip) :: i
real(dp) :: vcm(3)
! First get center of mass velocity
vcm = 0d0
do i = 1, 3
vcm(i) = sum(vel(:,i))
end do
vcm = vcm / real(natom,dp)
! Now remove center of mass velocity from all atoms
do i = 1, natom
vel(i,:) = vel(i,:) - vcm(:)
end do
end subroutine linearmom
subroutine get_temp(vel)
use precision
use param, only : natom, avtemp, mass, kb
implicit none
real(dp), dimension(:,:), intent(in) :: vel
integer(ip) :: i
real(dp) :: ke
ke = 0d0
do i = 1, natom
ke = ke + dot_product(vel(i,:),vel(i,:))
end do
avtemp = mass * ke / ( 3d0 * kb * real( natom - 1, dp))
end subroutine get_temp