-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmodel.py
409 lines (337 loc) · 16.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# -*- coding: utf-8 -*-
import math
import torch
from torch import nn
from torch.nn import functional as F
import numpy as np
from tools import init
class SkipConnection(nn.Module):
def __init__(self, module):
super(SkipConnection, self).__init__()
self.module = module
def forward(self, input):
return {'data':input['data'] + self.module(input), 'mask': input['mask'], 'graph_size':input['graph_size']}
class SkipConnection_Linear(nn.Module):
def __init__(self, module):
super(SkipConnection_Linear, self).__init__()
self.module = module
def forward(self, input):
return {'data':input['data'] + self.module(input['data']), 'mask': input['mask'], 'graph_size': input['graph_size']}
class MultiHeadAttention(nn.Module):
def __init__(
self,
n_heads,
input_dim,
embed_dim=None,
val_dim=None,
key_dim=None,
):
super(MultiHeadAttention, self).__init__()
if val_dim is None:
assert embed_dim is not None, "Provide either embed_dim or val_dim"
val_dim = embed_dim // n_heads
if key_dim is None:
key_dim = val_dim
self.n_heads = n_heads
self.input_dim = input_dim
self.embed_dim = embed_dim
self.val_dim = val_dim
self.key_dim = key_dim
self.norm_factor = 1 / math.sqrt(key_dim) # See Attention is all you need
self.W_query = nn.Linear(input_dim, key_dim, bias=False)
self.W_key = nn.Linear(input_dim, key_dim, bias=False)
self.W_val = nn.Linear(input_dim, val_dim, bias=False)
if embed_dim is not None:
# self.W_out = nn.Parameter(torch.Tensor(n_heads, key_dim, embed_dim))
self.W_out = nn.Linear(key_dim, embed_dim)
self.init_parameters()
def init_parameters(self):
for param in self.parameters():
stdv = 1. / math.sqrt(param.size(-1))
param.data.uniform_(-stdv, stdv)
def forward(self, data, h=None):
"""
:param q: queries (batch_size, n_query, input_dim)
:param h: data (batch_size, graph_size, input_dim)
:param mask: mask (batch_size, n_query, graph_size) or viewable as that (i.e. can be 2 dim if n_query == 1)
Mask should contain 1 if attention is not possible (i.e. mask is negative adjacency)
:return:
"""
q = data['data']
mask = data['mask']
graph_size = data['graph_size']
if h is None:
h = q
# batch_size = int(q.size()[0] / graph_size)
batch_size = q.size()[0]
graph_size = graph_size
input_dim = h.size()[-1]
n_query = graph_size
assert input_dim == self.input_dim, "Wrong embedding dimension of input"
hflat = h.contiguous().view(-1, input_dim)
qflat = q.contiguous().view(-1, input_dim)
# last dimension can be different for keys and values
shp = (self.n_heads, batch_size, graph_size, -1)
shp_q = (self.n_heads, batch_size, n_query, -1)
Q = self.W_query(qflat).view(shp_q)
K = self.W_key(hflat).view(shp)
V = self.W_val(hflat).view(shp)
# Calculate compatibility (n_heads, batch_size, n_query, graph_size)
compatibility = self.norm_factor * torch.matmul(Q, K.transpose(2, 3))
# Optionally apply mask to prevent attention
if mask is not None:
mask = mask.unsqueeze(1).repeat((1, graph_size, 1)).bool()
mask = mask.view(1, batch_size, n_query, graph_size).expand_as(compatibility)
if data['evaluate']:
compatibility[mask] = -math.inf
else:
compatibility[mask] = -30
attn = torch.softmax(compatibility, dim=-1) #
# If there are nodes with no neighbours then softmax returns nan so we fix them to 0
if mask is not None:
attnc = attn.clone()
attnc[mask] = 0
attn = attnc
heads = torch.matmul(attn, V)
out = self.W_out(heads.permute(1, 2, 0, 3).contiguous().view(-1, self.n_heads * self.val_dim))
out = out.view(batch_size, n_query, self.embed_dim)
return out
class MultiHeadAttentionLayer(nn.Sequential):
def __init__(
self,
n_heads,
embed_dim,
feed_forward_hidden=128):
super(MultiHeadAttentionLayer, self).__init__(
SkipConnection(
MultiHeadAttention(
n_heads,
input_dim=embed_dim,
embed_dim=embed_dim,
)
),
SkipConnection_Linear(
nn.Sequential(
nn.Linear(embed_dim, feed_forward_hidden),
nn.ReLU(),
nn.Linear(feed_forward_hidden, embed_dim)
) if feed_forward_hidden > 0 else nn.Linear(embed_dim, embed_dim)
),
)
class GraphAttentionEncoder(nn.Module):
def __init__(
self,
n_heads,
embed_dim,
n_layers,
node_dim=None,
feed_forward_hidden=128,
graph_size=None,
):
super(GraphAttentionEncoder, self).__init__()
# To map input to embedding space
self.init_embed = nn.Linear(node_dim, embed_dim) if node_dim is not None else None
self.graph_size = graph_size
self.layers = nn.Sequential(*(
MultiHeadAttentionLayer(n_heads, embed_dim, feed_forward_hidden)
for _ in range(n_layers)
))
def forward(self, x, mask=None, limited=False, evaluate = False):
# Batch multiply to get initial embeddings of nodes
h = self.init_embed(x.view(-1, x.size(-1))).view(*x.size()[:2], -1) if self.init_embed is not None else x
data = {'data':h, 'mask': mask, 'graph_size': self.graph_size, 'evaluate': evaluate}
h = self.layers(data)['data']
return (h, h.view(h.size()[0], self.graph_size, -1).mean(dim=1),)
def observation_decode_irregular(observation, args):
batchSize = observation.shape[0]
observation = observation.reshape((batchSize, -1))
actions = observation[:, 0 : args.selectedAction * 5].reshape(batchSize, -1, 5)
next_item = observation[:, args.selectedAction * 5 : args.selectedAction * 5 + 1].reshape((batchSize, -1))
actionMasks = actions[:,:, -1]
actions = actions[:,:, 0:-1]
heightMap = observation[:, args.selectedAction * 5 + 9:]
return next_item, actionMasks, heightMap, actions
def observation_decode_irregular_k_shape(observation, args):
batchSize = observation.shape[0]
observation = observation.reshape((batchSize, -1))
shapes = observation[:, 0 : args.bufferSize].reshape(batchSize, args.bufferSize)
heightMap = observation[:, args.bufferSize:]
return shapes, heightMap
# Factorised NoisyLinear layer with bias
class NoisyLinear(nn.Module):
def __init__(self, in_features, out_features, std_init=0.5):
super(NoisyLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.std_init = std_init
self.weight_mu = nn.Parameter(torch.empty(out_features, in_features))
self.weight_sigma = nn.Parameter(torch.empty(out_features, in_features))
self.register_buffer('weight_epsilon', torch.empty(out_features, in_features))
self.bias_mu = nn.Parameter(torch.empty(out_features))
self.bias_sigma = nn.Parameter(torch.empty(out_features))
self.register_buffer('bias_epsilon', torch.empty(out_features))
self.reset_parameters()
self.reset_noise()
def reset_parameters(self):
mu_range = 1 / math.sqrt(self.in_features)
self.weight_mu.data.uniform_(-mu_range, mu_range)
self.weight_sigma.data.fill_(self.std_init / math.sqrt(self.in_features))
self.bias_mu.data.uniform_(-mu_range, mu_range)
self.bias_sigma.data.fill_(self.std_init / math.sqrt(self.out_features))
def _scale_noise(self, size):
x = torch.randn(size)
return x.sign().mul_(x.abs().sqrt_())
def reset_noise(self):
epsilon_in = self._scale_noise(self.in_features)
epsilon_out = self._scale_noise(self.out_features)
self.weight_epsilon.copy_(epsilon_out.ger(epsilon_in))
self.bias_epsilon.copy_(epsilon_out)
def forward(self, input):
if self.training:
return F.linear(input, self.weight_mu + self.weight_sigma * self.weight_epsilon, self.bias_mu + self.bias_sigma * self.bias_epsilon)
else:
return F.linear(input, self.weight_mu, self.bias_mu)
class DQNBPP(nn.Module):
def __init__(self, args, action_space, shapeArray):
super(DQNBPP, self).__init__()
assert args.selectedAction
self.args = args
self.atoms = args.atoms # c51
self.action_space = action_space
assert shapeArray is not None
self.orginArray = shapeArray
self.arrayPointNum = 10000
self.shapeArray = shapeArray
if self.args.level == 'order':
self.shapeArray = torch.zeros((shapeArray.shape[0], self.arrayPointNum, shapeArray.shape[2]))
self.updateShapeArray()
self.heightMap = args.heightMap
self.rotNum = args.ZRotNum
self.MapLength = int(args.bin_dimension[0] / args.resolutionH)
zDim = 256
self.zDim = zDim
init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init.constant_(x, 0), nn.init.calculate_gain('leaky_relu'))
self.output_size = zDim * 2
# Network components
# you need to customize your cnn kernel here.
assert args.resolutionH == 0.01, 'you need to customize your cnn kernel here'
self.heightEncoder = nn.Sequential()
self.heightEncoder.add_module('conv1', init_(nn.Conv2d(1, 16, 4, stride=2, padding=1))) # 32 -> 16
self.heightEncoder.add_module('relu1', nn.LeakyReLU())
self.heightEncoder.add_module('conv2', init_(nn.Conv2d(16, 32, 4, stride=2, padding=1))) # 16 -> 8
self.heightEncoder.add_module('relu2', nn.LeakyReLU())
self.heightEncoder.add_module('conv3', init_(nn.Conv2d(32, 4, 3, stride=1, padding=1))) # 16 -> 8
self.heightEncoder.add_module('relu3', nn.LeakyReLU())
self.shapeEncoder = nn.Sequential()
self.shapeEncoder.add_module('linear1', init_(nn.Linear(3, 128)))
self.shapeEncoder.add_module('relu1', nn.LeakyReLU())
self.shapeEncoder.add_module('linear2', init_(nn.Linear(128, 128)))
self.shapeEncoder.add_module('relu2', nn.LeakyReLU())
self.init_candidate_embed = nn.Sequential(
init_(nn.Linear(4, 32)),
nn.LeakyReLU(),
init_(nn.Linear(32, 128)))
self.embedding_dim = 128
self.project_layer = nn.Sequential(
init_(nn.Linear(512, 256)),
nn.LeakyReLU(),
init_(nn.Linear(256, self.embedding_dim)))
if args.bufferSize > 1:
self.embedder = GraphAttentionEncoder(
n_heads=1,
embed_dim=self.embedding_dim,
n_layers=1,
graph_size=args.bufferSize,
)
self.gat_project_layer = nn.Sequential(
init_(nn.Linear(384, 256)),
nn.LeakyReLU(),
init_(nn.Linear(256, self.embedding_dim)))
self.fc_h_v = NoisyLinear(self.embedding_dim, args.hidden_size, std_init=args.noisy_std)
self.fc_h_a = NoisyLinear(self.embedding_dim, args.hidden_size, std_init=args.noisy_std)
self.fc_z_v = NoisyLinear(args.hidden_size, self.atoms, std_init=args.noisy_std)
self.fc_z_a = NoisyLinear(args.hidden_size, self.atoms, std_init=args.noisy_std)
def updateShapeArray(self):
if self.args.level == 'order':
indices = np.random.randint(self.shapeArray.shape[1], size=self.arrayPointNum)
for idx in range(len(self.orginArray)):
self.shapeArray[idx] = self.orginArray[idx][indices].clone().detach()
self.forwardCounter = 0
def decode_physic_only_with_heightmap(self, observation):
batchSize = observation.shape[0]
observation = observation.reshape((batchSize, -1))
next_item = observation[:, 0 : 9].reshape((batchSize, 9))
masks = observation[:, 9: 9 + self.action_space]
heightMap = observation[:, 9 + self.action_space : ] if self.heightMap else None
return next_item, masks, heightMap
def embed_heightmap_and_sampled_point_cloud(self, x):
batchSize = x.shape[0]
next_item, actionMask, heightMap, candidates = observation_decode_irregular(x, self.args)
graph_size = candidates.size(1)
valid_mask = actionMask
invalid_ones = 1 - valid_mask
candidates_size = candidates.size(1)
heightMap = heightMap.reshape((batchSize, 1, self.MapLength, self.MapLength))
map_feature = self.heightEncoder(heightMap).reshape((batchSize, -1))
next_item_ID = next_item[:, 0].long()
nextShape = self.shapeArray[next_item_ID.cpu()]
indices = np.random.randint(self.shapeArray.shape[1], size=self.args.samplePointsNum)
nextShape = nextShape[:, indices].to(self.args.device)
shape_feature = self.shapeEncoder(nextShape)
shape_feature = torch.max(shape_feature, dim=1)[0]
candidate_inputs = candidates.contiguous().view(batchSize, candidates_size, -1)
candidate_embedded_inputs = self.init_candidate_embed(candidate_inputs)
init_embedding = torch.cat((shape_feature.repeat(1, candidates_size).reshape(batchSize, candidates_size, -1),
map_feature.repeat((1, candidates_size)).reshape(batchSize, candidates_size, -1),
candidate_embedded_inputs), dim=2).view(batchSize * candidates_size, -1)
init_embedding = self.project_layer(init_embedding).view(batchSize, candidates_size, self.embedding_dim)
embeddings = init_embedding
embedding_shape = embeddings.shape
transEmbedding = embeddings.view((batchSize, graph_size, -1))
invalid_ones = invalid_ones.view(embedding_shape[0], embedding_shape[1], 1).expand(embedding_shape).bool()
transEmbedding[invalid_ones] = 0
graph_embed = transEmbedding.view(embedding_shape).mean(1)
return embeddings, graph_embed
def embed_k_buffer_shape_with_gat(self, x):
batchSize = x.shape[0]
next_k_shapes_ID, heightMap = observation_decode_irregular_k_shape(x, self.args)
graph_size = next_k_shapes_ID.size(1)
candidates_size = graph_size
heightMap = heightMap.reshape((batchSize, 1, self.MapLength, self.MapLength))
map_feature = self.heightEncoder(heightMap).reshape((batchSize, -1))
shapeIdx = next_k_shapes_ID.detach().cpu().long().reshape(-1)
next_k_shapes = self.shapeArray[shapeIdx]
indices = np.random.randint(self.shapeArray.shape[1], size=self.args.samplePointsNum)
next_k_shapes = next_k_shapes[:, indices].to(self.args.device)
shape_feature = self.shapeEncoder(next_k_shapes)
shape_feature = torch.max(shape_feature, dim=1)[0]
init_embedding = torch.cat((shape_feature.reshape(batchSize, candidates_size, -1),
map_feature.repeat((1, candidates_size)).reshape(batchSize, candidates_size, -1)), dim=2).view(batchSize * candidates_size, -1)
init_embedding = self.gat_project_layer(init_embedding).view(batchSize, candidates_size, self.embedding_dim)
invalid_ones = torch.zeros((batchSize, candidates_size))
embeddings, _ = self.embedder(init_embedding, mask=invalid_ones, limited=True)
embedding_shape = embeddings.shape
transEmbedding = embeddings.view((batchSize, graph_size, -1))
graph_embed = transEmbedding.view(embedding_shape).mean(1)
return embeddings, graph_embed
def forward(self, x, log=False):
if self.args.bufferSize > 1:
x, xGlobal = self.embed_k_buffer_shape_with_gat(x)
else:
x, xGlobal = self.embed_heightmap_and_sampled_point_cloud(x)
v = self.fc_z_v(F.relu(self.fc_h_v(xGlobal))) # Value stream
a = self.fc_z_a(F.relu(self.fc_h_a(x))) # Advantage stream
v, a = v.view(-1, 1, self.atoms), a.view(-1, self.action_space, self.atoms)
q = v + a - a.mean(1, keepdim=True) # Combine streams
if log: # Use log softmax for numerical stability
q = F.log_softmax(q, dim=2) # Log probabilities with action over second dimension
else:
q = F.softmax(q, dim=2) # Probabilities with action over second dimension
self.forwardCounter += 1
if self.forwardCounter == 1000:
self.updateShapeArray()
return q
def reset_noise(self):
for name, module in self.named_children():
if 'fc' in name:
module.reset_noise()