-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpeb_ard_with_stats.m
205 lines (186 loc) · 6.58 KB
/
peb_ard_with_stats.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
function [beta, lambda_vals, t_stats, p_values, posterior_means, posterior_covs] = ...
peb_ard_with_stats(theta, X, Sigma_theta_prior, max_iter, tol)
% This function implements a Parametric Empirical Bayes (PEB) method for
% estimating group-level parameters while incorporating individual-level
% priors on the parameters. The approach combines ridge regression with
% Bayesian regularisation, where prior covariance information about individual
% parameters is used to shrink the group-level estimates. It also includes
% Automatic Relevance Determination (ARD) to determine the importance of each
% predictor. Returns the full individual level posteriors.
%
% [b,l,t,p,pos_mu,pos_cov] = peb_ard_with_stats(theta, X, Sigma_theta_prior, max_iter, tol)
%
% Inputs:
% - theta: Individual-level parameters (N x d)
% - X: Design matrix (N x p)
% - Sigma_theta_prior: Prior covariance of individual-level parameters (d x d)
% - max_iter: Maximum number of iterations
% - tol: Convergence tolerance
%
% Outputs:
% - beta: Estimated beta coefficients (p x d)
% - lambda_vals: ARD hyperparameters (p x 1)
% - t_stats: t-statistics for each beta coefficient
% - p_values: p-values for each beta coefficient
% - posterior_means: Individual-level posterior means (N x d)
% - posterior_covs: Posterior covariances (d x d)
%
% AS2024
if nargin < 4
max_iter = 100; % Default maximum iterations
end
if nargin < 5
tol = 1e-6; % Default convergence tolerance
end
[N, d] = size(theta);
p = size(X, 2); % Number of predictors
% Initialize lambda and beta
lambda_vals = ones(p, 1);
beta = zeros(p, d);
% Inverse of prior covariance
Sigma_theta_prior = Sigma_theta_prior + 1e-6 * ones(d, d);
Sigma_theta_prior_inv = inv(Sigma_theta_prior);
% Initialize individual parameter covariances
sigma = diag(Sigma_theta_prior); % Start with prior variances for each parameter
for iter = 1:max_iter
beta_old = beta;
% Update beta using parameter-specific variances
for j = 1:p
beta(j, :) = (X(:, j)' * (theta - X * beta + X(:, j) * beta(j, :)) * diag(1 ./ sigma)) / ...
(X(:, j)' * X(:, j) + lambda_vals(j));
end
% Update ARD hyperparameters
lambda_vals = 1 ./ (sum(beta.^2, 2) + 1e-6);
% Update residuals and parameter-specific variances
for j = 1:d
residuals_j = theta(:, j) - X * beta(:, j);
sigma(j) = (residuals_j' * residuals_j + Sigma_theta_prior(j, j)) / (N + 1);
end
% Check for convergence
if norm(beta - beta_old, 'fro') < tol
fprintf('Converged after %d iterations.\n', iter);
break;
end
if iter == max_iter
fprintf('Did not converge after %d iterations.\n', max_iter);
end
end
% Compute posterior covariances and means
Sigma_residual = cov(theta - X * beta);
posterior_covs = Sigma_residual;%zeros(d, d);
posterior_means = zeros(N, d);
for j = 1:d
posterior_covs(j, j) = 1 / (1 / Sigma_theta_prior(j, j) + N / sigma(j));
for i = 1:N
posterior_means(i, j) = posterior_covs(j, j) * ...
(theta(i, j) / sigma(j) + sum(X(i, :) .* beta(:, j)') / Sigma_theta_prior(j, j));
end
end
% Compute variance of beta
beta_variance = zeros(p, d);
for j = 1:p
beta_variance(j, :) = diag(Sigma_theta_prior) ./ (sum(X(:, j).^2) + lambda_vals(j)^-1);
end
% Compute t-statistics
t_stats = beta ./ sqrt(beta_variance);
% Compute p-values (two-tailed)
df = N - p; % Degrees of freedom
p_values = 2 * (1 - tcdf(abs(t_stats), df));
end
% OLD
%------------------------------------------------------------------------
% function [beta, lambda_vals, t_stats, p_values, posterior_means, posterior_covs] = ...
% peb_ard_with_stats(theta, X, Sigma_theta_prior, max_iter, tol)
% % This function implements a Parametric Empirical Bayes (PEB) method for
% % estimating group-level parameters while incorporating individual-level
% % priors on the parameters. The approach combines ridge regression with
% % Bayesian regularization, where prior covariance information about individual
% % parameters is used to shrink the group-level estimates. It also includes
% % Automatic Relevance Determination (ARD) to determine the importance of each
% % predictor. Returns the full individual level posteriors.
% %
% % [b,l,t,p,pos_mu,pos_cov] = peb_ard_with_stats(theta, X, Sigma_theta_prior, max_iter, tol)
% %
% % Inputs:
% % - theta: Individual-level parameters (N x d)
% % - X: Design matrix (N x p)
% % - Sigma_theta_prior: Prior covariance of individual-level parameters (d x d)
% % - max_iter: Maximum number of iterations
% % - tol: Convergence tolerance
% %
% % Outputs:
% % - beta: Estimated beta coefficients (p x d)
% % - lambda_vals: ARD hyperparameters (p x 1)
% % - t_stats: t-statistics for each beta coefficient
% % - p_values: p-values for each beta coefficient
% % - posterior_means: Individual-level posterior means (N x d)
% % - posterior_covs: Posterior covariances (d x d)
% %
% % AS2024
%
% if nargin < 4
% max_iter = 100; % Default maximum iterations
% end
% if nargin < 5
% tol = 1e-6; % Default convergence tolerance
% end
%
%
% [N, d] = size(theta);
% p = size(X, 2); % Number of predictors
%
% % Initialize lambda and beta
% lambda_vals = ones(p, 1);
% beta = zeros(p, d);
%
% % Inverse of prior covariance
% Sigma_theta_prior_inv = inv(Sigma_theta_prior);
%
% for iter = 1:max_iter
% beta_old = beta;
%
% % Update beta using prior covariance
% for j = 1:p
% beta(j, :) = (X(:, j)' * (theta - X * beta + X(:, j) * beta(j, :)) * Sigma_theta_prior_inv) / ...
% (X(:, j)' * X(:, j) + lambda_vals(j));
% end
%
% % Update ARD hyperparameters
% lambda_vals = 1 ./ (sum(beta.^2, 2) + 1e-6);
%
% % Check for convergence
% if norm(beta - beta_old, 'fro') < tol
% break;
% end
% end
%
%
%
%
% % Compute residuals and variance
% residuals = theta - X * beta;
% sigma_squared = var(residuals(:));
%
% % Compute variance of beta
% beta_variance = zeros(p, d);
% for j = 1:p
% beta_variance(j, :) = diag(Sigma_theta_prior) ./ (sum(X(:, j).^2) + lambda_vals(j)^-1);
% end
%
% % Compute t-statistics
% t_stats = beta ./ sqrt(beta_variance);
%
% % Compute p-values (two-tailed)
% df = N - p; % Degrees of freedom
% p_values = 2 * (1 - tcdf(abs(t_stats), df));
%
% % Compute individual-level posterior means and covariances
% posterior_means = zeros(N, d);
% posterior_covs = zeros(d, d); % Common posterior covariance for all individuals
%
% posterior_covs = inv(Sigma_theta_prior_inv + (1 / sigma_squared) * eye(d));
% for i = 1:N
% posterior_means(i, :) = posterior_covs * ...
% (Sigma_theta_prior_inv * theta(i, :)' + ((1 / sigma_squared) * X(i, :) * beta)');
% end
% end