-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetector.py
94 lines (78 loc) · 4.22 KB
/
detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
import PIL.Image
import torch, torchvision
import pytorch_lightning as pl
import util
def create_basemodel(**kwargs):
return torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True, progress=False, **kwargs)
def create_conifer_basemodel(**kwargs):
return create_basemodel(box_detections_per_img=2000, rpn_pre_nms_top_n_test=24000, **kwargs)
class TrainingModel(pl.LightningModule):
def __init__(self, basemodel):
super().__init__()
self.basemodel = basemodel
def training_step(self, batch, i):
lossdict = self.basemodel(*batch)
loss = sum(loss for loss in lossdict.values())
self.log('loss', loss)
for lossname, lossval in lossdict.items():
self.log(lossname, lossval, prog_bar=True, on_epoch=True)
return loss
def configure_optimizers(self):
optim = torch.optim.SGD(self.parameters(), lr=0.005, momentum=0.9, weight_decay=0.0005)
sched = torch.optim.lr_scheduler.StepLR(optim, step_size=3, gamma=0.1)
return [optim], [sched]
class PrintMetricsCallback(pl.callbacks.progress.ProgressBarBase):
'''Prints metrics after each training epoch in a compact table'''
def on_train_epoch_end(self, trainer, pl_module, *args):
metrics_str = ' | '.join([f'{k}:{float(v):>9.5f}' for k,v in trainer.progress_bar_dict.items()])
print(f'[{trainer.current_epoch:04d}]', metrics_str)
def on_train_batch_end(self, trainer, pl_module, *args):
super().on_train_batch_end(trainer, pl_module, *args)
percent = (self.train_batch_idx / self.total_train_batches)
metrics_str = ' | '.join([f'{k}:{float(v):>9.5f}' for k,v in trainer.progress_bar_dict.items()])
print(f'[{percent:.2f}] {metrics_str}', end='\r')
def create_trainer(epochs=10):
return pl.Trainer(max_epochs=epochs, gpus=1, checkpoint_callback=None, logger=False,
terminate_on_nan=True, gradient_clip_val=1.0, #clipping gradient because I sometimes get NaNs without it
callbacks=[PrintMetricsCallback()])
class FullDetector:
'''Combines multiple basemodels (e.g. for oak) and automatically applies slicing for large images.'''
def __init__(self, basemodels, patchsizes, slacks):
assert len(basemodels) == len(patchsizes) == len(slacks)
self.basemodels = basemodels
for m in self.basemodels:
#minimum detection score: 0.5, gives a small speed boost
m.roi_heads.score_thresh = 0.5
self.patchsizes = patchsizes
self.slacks = slacks
@staticmethod
def load_image(imgpath):
return PIL.Image.open(imgpath) / np.float32(255)
def predict_patches(self, model, patches, callback=None):
maskpatches = []
for i,patch in enumerate(patches):
inputs = patch.transpose(2,0,1)[np.newaxis]
with torch.no_grad():
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
outputs = model.to(device)(torch.as_tensor(inputs, device=device))
outputs = [outputs[0]['masks'].cpu().numpy()]
masks = outputs[0][:,0]
maskpatches += [ masks.max(axis=0) if len(masks) else np.zeros(masks.shape[1:]) ]
if callback:
callback( (i+1) / len(patches) )
model.cpu();
return np.stack(maskpatches)
def process_image(self, image, progress_callback=None):
H,W = image.shape[:2]
fullresults = []
for model, slack, patchsize in zip(self.basemodels, self.slacks, self.patchsizes):
paddings = [(0,max(0,patchsize-H)), (0,max(0,patchsize-W)), (0,0)]
padded = np.pad(image, paddings, mode='constant')
patches = util.slice_into_patches_with_overlap(padded, patchsize, slack)
resultpatches = self.predict_patches(model, patches, callback=progress_callback)
fullresult = util.stitch_overlapping_patches(resultpatches, image.shape, slack=slack )[:H,:W]
fullresults += [fullresult]
fullresult = np.max(fullresults, axis=0)
finalresult = (fullresult > 0.5)
return finalresult