-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathrun.py
687 lines (562 loc) · 29.1 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
import argparse
import json
import logging
import numpy as np
import os
import random
import torch
from typing import Any
from typing import Dict
from typing import TextIO
from typing import Tuple
from collections import Counter, defaultdict
from sklearn.metrics import f1_score
from sklearn.preprocessing import MultiLabelBinarizer
from tokenizers import BertWordPieceTokenizer
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from tqdm import trange
from transformers import AdamW
from constants import SPECIAL_TOKENS
from data_readers import IntentDataset, SlotDataset, TOPDataset
from bert_models import BertPretrain, ExampleIntentBertModel, IntentBertModel, JointSlotIntentBertModel, SlotBertModel
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO
)
LOGGER = logging.getLogger(__name__)
def read_args():
parser = argparse.ArgumentParser()
parser.add_argument("--train_data_path", type=str)
parser.add_argument("--test_data_path", type=str)
parser.add_argument("--val_data_path", type=str, default='')
parser.add_argument("--mlm_data_path", type=str, default='')
parser.add_argument("--token_vocab_path", type=str)
parser.add_argument("--output_dir", type=str, default='')
parser.add_argument("--model_name_or_path", type=str, default="bert-base-uncased")
parser.add_argument("--task", type=str, choices=["intent", "slot", "top"])
parser.add_argument("--dump_outputs", action="store_true")
parser.add_argument("--mlm_pre", action="store_true")
parser.add_argument("--mlm_during", action="store_true")
parser.add_argument("--example", action="store_true")
parser.add_argument("--use_observers", action="store_true")
parser.add_argument("--repeat", type=int, default=1)
parser.add_argument("--grad_accum", type=int, default=1)
parser.add_argument("--train_batch_size", type=int, default=16)
parser.add_argument("--max_seq_length", type=int, default=50)
parser.add_argument("--num_epochs", type=int, default=3)
parser.add_argument("--patience", type=int, default=5)
parser.add_argument("--logging_steps", type=int, default=100)
parser.add_argument("--do_lowercase", action="store_true")
parser.add_argument("--dropout", type=float, default=0.5)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--device", default=0, type=int, help="GPU device #")
parser.add_argument("--max_grad_norm", default=-1.0, type=float, help="Max gradient norm.")
parser.add_argument("--seed", type=int, default=42)
return parser.parse_args()
def retrieve_examples(dataset, labels, inds, task, num=None, cache=defaultdict(list)):
if num is None and labels is not None:
num = len(labels) * 2
assert task == "intent", "Example-driven may only be used with intent prediction"
if len(cache) == 0:
# Populate cache
for i, example in enumerate(dataset):
cache[example['intent_label']].append(i)
print("Populated example cache.")
# One example for each label
example_inds = []
for l in set(labels.tolist()):
if l == -1:
continue
ind = random.choice(cache[l])
retries = 0
while ind in inds.tolist() or type(ind) is not int:
ind = random.choice(cache[l])
retries += 1
if retries > len(dataset):
break
example_inds.append(ind)
# Sample randomly until we hit batch size
while len(example_inds) < min(len(dataset), num):
ind = random.randint(0, len(dataset) - 1)
if ind not in example_inds and ind not in inds.tolist():
example_inds.append(ind)
# Create examples
example_data = [dataset[i] for i in example_inds]
examples = {}
for key in ['input_ids', 'attention_mask', 'token_type_ids']:
examples[key] = torch.stack([torch.LongTensor(e[key]) for e in example_data], dim=0).cuda()
examples['intent_label'] = torch.LongTensor([e['intent_label'] for e in example_data]).cuda()
return examples
def evaluate(model: torch.nn.Module,
eval_dataloader: DataLoader,
ex_dataloader: DataLoader,
tokenizer: Any,
task: str = "intent",
example: bool = False,
device: int = 0,
args: Any = None) -> Tuple[float, float, float]:
model.eval()
bert_output = []
labels = []
if example:
assert task == "intent", "Example-Driven may only be used for intent prediction"
with torch.no_grad():
for batch in tqdm(ex_dataloader, desc="Building train memory."):
# Move to GPU
if torch.cuda.is_available():
for key, val in batch.items():
if type(batch[key]) is list:
continue
batch[key] = batch[key].to(device)
pooled_output = model.encode(batch["input_ids"], batch["attention_mask"], batch["token_type_ids"])
bert_output.append(pooled_output.cpu())
labels += batch["intent_label"].tolist()
mem = torch.cat(bert_output, dim=0).cuda()
print("Memory size:", mem.size())
pred = []
true = []
for batch in tqdm(eval_dataloader, desc="Evaluating"):
with torch.no_grad():
# Move to GPU
if torch.cuda.is_available():
for key, val in batch.items():
if type(batch[key]) is list:
continue
batch[key] = batch[key].to(device)
if task == "intent":
if not example:
# Forward prop
intent_logits, intent_loss = model(input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
token_type_ids=batch["token_type_ids"],
intent_label=batch["intent_label"])
# Argmax to get predictions
intent_preds = torch.argmax(intent_logits, dim=1).cpu().tolist()
pred += intent_preds
true += batch["intent_label"].cpu().tolist()
else:
# Encode input
pooled_output = model.encode(batch["input_ids"], batch["attention_mask"], batch["token_type_ids"])
# Probability distribution over examples
probs = torch.softmax(pooled_output.mm(mem.t())[0], dim=-1)
# Copy mechanism over training set
intent_probs = torch.zeros(len(ex_dataloader.dataset.intent_idx_to_label)).cuda().scatter_add(0,
torch.LongTensor(
labels).cuda(),
probs)
pred.append(intent_probs.argmax(dim=-1).item())
true += batch["intent_label"].cpu().tolist()
elif task == "slot":
# Forward prop
slot_logits, slot_loss = model(input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
token_type_ids=batch["token_type_ids"],
slot_labels=batch["slot_labels"])
# Argmax to get predictions
slot_preds = torch.argmax(slot_logits, dim=2).detach().cpu().numpy()
# Generate words, true slots and pred slots
words = [tokenizer.decode([e]) for e in batch["input_ids"][0].tolist()]
actual_gold_slots = batch["slot_labels"].cpu().numpy().squeeze().tolist()
true_slots = [eval_dataloader.dataset.slot_idx_to_label[s] for s in actual_gold_slots]
actual_predicted_slots = slot_preds.squeeze().tolist()
pred_slots = [eval_dataloader.dataset.slot_idx_to_label[s] for s in actual_predicted_slots]
# Find the last turn and only include that. Irrelevant for restaurant8k/dstc8-sgd.
if '>' in words:
ind = words[::-1].index('>')
words = words[-ind:]
true_slots = true_slots[-ind:]
pred_slots = pred_slots[-ind:]
# Filter out words that are padding
filt_words = [w for w in words if w not in ['', 'user']]
true_slots = [s for w, s in zip(words, true_slots) if w not in ['', 'user']]
pred_slots = [s for w, s in zip(words, pred_slots) if w not in ['', 'user']]
# Convert to slot labels
pred.append(pred_slots)
true.append(true_slots)
assert len(pred_slots) == len(true_slots)
assert len(pred_slots) == len(filt_words)
elif task == "top":
intent_logits, slot_logits, _ = model(input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
token_type_ids=batch["token_type_ids"])
# Argmax to get intent predictions
intent_preds = torch.argmax(intent_logits, dim=1).cpu().tolist()
# Argmax to get slot predictions
slot_preds = torch.argmax(slot_logits, dim=2).detach().cpu().numpy()
actual_predicted_slots = slot_preds.squeeze().tolist()
intent_true = batch["intent_label"].cpu().tolist()
actual_gold_slots = batch["slot_labels"].cpu().numpy().squeeze().tolist()
# Only unmasked
pad_ind = batch["attention_mask"].tolist()[0].index(0)
actual_gold_slots = actual_gold_slots[1:pad_ind - 1]
actual_predicted_slots = actual_predicted_slots[1:pad_ind - 1]
# Add to lists
pred.append((intent_preds if type(intent_preds) is int else intent_preds[0], actual_predicted_slots))
true.append((intent_true[0], actual_gold_slots))
def _extract(slot_labels):
"""
Convert from IBO slot labels to spans.
"""
slots = []
cur_key = None
start_ind = -1
for i, s in enumerate(slot_labels):
if s == "O" or s == "[PAD]":
# Add on-going slot if there is one
if cur_key is not None:
slots.append("{}:{}-{}".format(cur_key, start_ind, i))
cur_key = None
continue
token_type, slot_key = s.split("-", 1)
if token_type == "B":
# If there is an on-going slot right now, add it
if cur_key is not None:
slots.append("{}:{}-{}".format(cur_key, start_ind, i))
cur_key = slot_key
start_ind = i
elif token_type == "I":
# If the slot key doesn't match the currently active, this is invalid.
# Treat this as an O.
if slot_key != cur_key:
if cur_key is not None:
slots.append("{}:{}-{}".format(cur_key, start_ind, i))
cur_key = None
continue
# After the loop, add any oongoing slots
if cur_key is not None:
slots.append("{}:{}-{}".format(cur_key, start_ind, len(slot_labels)))
return slots
# Perform evaluation
if task == "intent":
if args.dump_outputs:
pred_labels = [eval_dataloader.dataset.intent_idx_to_label.get(p) for p in pred]
json.dump(pred_labels, open(args.output_dir + "outputs.json", "w+"))
return sum(p == t for p, t in zip(pred, true)) / len(pred)
elif task == "slot":
pred_slots = [_extract(e) for e in pred]
true_slots = [_extract(e) for e in true]
if args.dump_outputs:
json.dump(pred_slots, open(args.output_dir + "outputs.json", "w+"))
slot_types = set([slot.split(":")[0] for row in true_slots for slot in row])
slot_type_f1_scores = []
for slot_type in slot_types:
predictions_for_slot = [
[p for p in prediction if slot_type in p] for prediction in pred_slots
]
labels_for_slot = [
[l for l in label if slot_type in l] for label in true_slots
]
proposal_made = [len(p) > 0 for p in predictions_for_slot]
has_label = [len(l) > 0 for l in labels_for_slot]
prediction_correct = [
prediction == label for prediction, label in zip(predictions_for_slot, labels_for_slot)
]
true_positives = sum([
int(proposed and correct)
for proposed, correct in zip(proposal_made, prediction_correct)
])
num_predicted = sum([int(proposed) for proposed in proposal_made])
num_to_recall = sum([int(hl) for hl in has_label])
precision = true_positives / (1e-5 + num_predicted)
recall = true_positives / (1e-5 + num_to_recall)
f1_score = 2 * precision * recall / (1e-5 + precision + recall)
slot_type_f1_scores.append(f1_score)
return np.mean(slot_type_f1_scores)
elif task == "top":
if args.dump_outputs:
pred_labels = [(eval_dataloader.dataset.intent_idx_to_label[intent],
[eval_dataloader.dataset.slot_idx_to_label[e] for e in slots]) for intent, slots in pred]
json.dump(pred_labels, open(args.output_dir + "outputs.json", "w+"))
return sum(p == t for p, t in zip(pred, true)) / len(pred)
def mask_tokens(inputs, tokenizer, mlm_probability=0.15):
""" Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """
labels = inputs.clone()
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
probability_matrix = torch.full(labels.shape, mlm_probability)
# special_tokens_mask = [tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()]
probability_matrix.masked_fill_(torch.tensor(labels == 0, dtype=torch.bool), value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -1 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = tokenizer.token_to_id("[MASK]")
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(tokenizer.get_vocab_size(), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random].cuda()
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def train(args, rep):
# Set random seed
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# Rename output dir based on arguments
if args.output_dir == "":
cwd = os.getcwd()
base = args.model_name_or_path.split("/")[-1]
model_type = "_example" if args.example else "_linear"
data_path = '_' + '_'.join(args.train_data_path.split("/")[-2:]).replace(".csv", "")
mlm_on = "_mlmtrain" if args.mlm_data_path == "" or args.mlm_data_path == args.train_data_path else "_mlmfull"
mlm_pre = "_mlmpre" if args.mlm_pre else ""
mlm_dur = "_mlmdur" if args.mlm_during else ""
observer = "_observer" if args.use_observers else ""
name = base + model_type + data_path + mlm_on + mlm_pre + mlm_dur + observer + "_v{}".format(rep)
args.output_dir = os.path.join(cwd, "checkpoints", name)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
elif args.num_epochs == 0:
# This means we're evaluating. Don't create the directory.
pass
else:
raise Exception("Directory {} already exists".format(args.output_dir))
# Dump arguments to the checkpoint directory, to ensure reproducability.
if args.num_epochs > 0:
json.dump(args.__dict__, open(os.path.join(args.output_dir, 'args.json'), "w+"))
torch.save(args, os.path.join(args.output_dir, "run_args"))
# Configure tensorboard writer
tb_writer = SummaryWriter(log_dir=args.output_dir)
# Configure tokenizer
token_vocab_name = os.path.basename(args.token_vocab_path).replace(".txt", "")
tokenizer = BertWordPieceTokenizer(args.token_vocab_path,
lowercase=args.do_lowercase)
tokenizer.enable_padding(length=args.max_seq_length)
if args.num_epochs > 0:
tokenizer.save(args.output_dir)
# Data readers
if args.task == "intent":
dataset_initializer = IntentDataset
elif args.task == "slot":
dataset_initializer = SlotDataset
elif args.task == "top":
dataset_initializer = TOPDataset
else:
raise ValueError("Not a valid task type: {}".format(args.task))
train_dataset = dataset_initializer(args.train_data_path,
tokenizer,
args.max_seq_length,
token_vocab_name)
if args.mlm_data_path != '':
mlm_dataset = dataset_initializer(args.mlm_data_path,
tokenizer,
args.max_seq_length,
token_vocab_name)
else:
mlm_dataset = train_dataset
val_dataset = dataset_initializer(args.val_data_path,
tokenizer,
512,
token_vocab_name) if args.val_data_path else None
test_dataset = dataset_initializer(args.test_data_path,
tokenizer,
512,
token_vocab_name)
# Data loaders
train_dataloader = DataLoader(dataset=train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
pin_memory=True)
mlm_dataloader = DataLoader(dataset=mlm_dataset,
batch_size=args.train_batch_size,
shuffle=True,
pin_memory=True)
val_dataloader = DataLoader(dataset=val_dataset,
batch_size=1,
pin_memory=True) if val_dataset else None
test_dataloader = DataLoader(dataset=test_dataset,
batch_size=1,
pin_memory=True)
# Load model
if args.task == "intent":
if args.example:
model = ExampleIntentBertModel(args.model_name_or_path,
dropout=args.dropout,
num_intent_labels=len(train_dataset.intent_label_to_idx),
use_observers=args.use_observers)
else:
model = IntentBertModel(args.model_name_or_path,
dropout=args.dropout,
num_intent_labels=len(train_dataset.intent_label_to_idx),
use_observers=args.use_observers)
elif args.task == "slot":
model = SlotBertModel(args.model_name_or_path,
dropout=args.dropout,
num_slot_labels=len(train_dataset.slot_label_to_idx))
elif args.task == "top":
model = JointSlotIntentBertModel(args.model_name_or_path,
dropout=args.dropout,
num_intent_labels=len(train_dataset.intent_label_to_idx),
num_slot_labels=len(train_dataset.slot_label_to_idx))
else:
raise ValueError("Cannot instantiate model for task: {}".format(args.task))
if torch.cuda.is_available():
model.to(args.device)
# Initialize MLM model
if args.mlm_pre or args.mlm_during:
pre_model = BertPretrain(args.model_name_or_path)
mlm_optimizer = AdamW(pre_model.parameters(), lr=args.learning_rate, eps=args.adam_epsilon)
if torch.cuda.is_available():
pre_model.to(args.device)
# MLM Pre-train
if args.mlm_pre and args.num_epochs > 0:
# Maintain most recent score per label.
for epoch in trange(3, desc="Pre-train Epochs"):
pre_model.train()
epoch_loss = 0
num_batches = 0
for batch in tqdm(mlm_dataloader):
num_batches += 1
# Train model
if "input_ids" in batch:
inputs, labels = mask_tokens(batch["input_ids"].cuda(), tokenizer)
else:
inputs, labels = mask_tokens(batch["ctx_input_ids"].cuda(), tokenizer)
loss = pre_model(inputs, labels)
if args.grad_accum > 1:
loss = loss / args.grad_accum
loss.backward()
epoch_loss += loss.item()
if args.grad_accum <= 1 or num_batches % args.grad_accum == 0:
if args.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(pre_model.parameters(), args.max_grad_norm)
mlm_optimizer.step()
pre_model.zero_grad()
LOGGER.info("Epoch loss: {}".format(epoch_loss / num_batches))
# Transfer BERT weights
model.bert_model = pre_model.bert_model.bert
# Train
optimizer = AdamW(model.parameters(), lr=args.learning_rate, eps=args.adam_epsilon)
global_step = 0
metrics_to_log = {}
best_score = -1
patience = 0
for epoch in trange(args.num_epochs, desc="Epoch"):
model.train()
epoch_loss = 0
num_batches = 0
for batch in tqdm(train_dataloader):
num_batches += 1
global_step += 1
# Transfer to gpu
if torch.cuda.is_available():
for key, val in batch.items():
if type(batch[key]) is list:
continue
batch[key] = batch[key].to(args.device)
# Train model
if args.task == "intent":
if args.example:
examples = retrieve_examples(train_dataset, batch["intent_label"], batch["ind"], task="intent")
_, intent_loss = model(input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
token_type_ids=batch["token_type_ids"],
intent_label=batch["intent_label"],
example_input=examples["input_ids"],
example_mask=examples["attention_mask"],
example_token_types=examples["token_type_ids"],
example_intents=examples["intent_label"])
else:
_, intent_loss = model(input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
token_type_ids=batch["token_type_ids"],
intent_label=batch["intent_label"])
if args.grad_accum > 1:
intent_loss = intent_loss / args.grad_accum
intent_loss.backward()
epoch_loss += intent_loss.item()
elif args.task == "slot":
_, slot_loss = model(input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
token_type_ids=batch["token_type_ids"],
slot_labels=batch["slot_labels"])
if args.grad_accum > 1:
slot_loss = slot_loss / args.grad_accum
slot_loss.backward()
epoch_loss += slot_loss.item()
elif args.task == "top":
_, _, loss = model(input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
token_type_ids=batch["token_type_ids"],
intent_label=batch["intent_label"],
slot_labels=batch["slot_labels"])
if args.grad_accum > 1:
loss = loss / args.grad_accum
loss.backward()
epoch_loss += loss.item()
if args.grad_accum <= 1 or num_batches % args.grad_accum == 0:
if args.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
model.zero_grad()
LOGGER.info("Epoch loss: {}".format(epoch_loss / num_batches))
# Evaluate and save checkpoint
score = evaluate(model, val_dataloader, train_dataloader, tokenizer, task=args.task, example=args.example,
device=args.device, args=args)
metrics_to_log["eval_score"] = score
LOGGER.info("Task: {}, score: {}---".format(args.task,
score))
if score < best_score:
patience += 1
else:
patience = 0
if score > best_score:
LOGGER.info("New best results found for {}! Score: {}".format(args.task,
score))
torch.save(model.state_dict(), os.path.join(args.output_dir, "model.pt"))
torch.save(optimizer.state_dict(), os.path.join(args.output_dir, "optimizer.pt"))
best_score = score
for name, val in metrics_to_log.items():
tb_writer.add_scalar(name, val, global_step)
if patience >= args.patience:
LOGGER.info("Stopping early due to patience")
break
# Run MLM during training
if args.mlm_during:
pre_model.train()
epoch_loss = 0
num_batches = 0
for batch in tqdm(mlm_dataloader):
num_batches += 1
# Train model
if "input_ids" in batch:
inputs, labels = mask_tokens(batch["input_ids"].cuda(), tokenizer)
else:
inputs, labels = mask_tokens(batch["ctx_input_ids"].cuda(), tokenizer)
loss = pre_model(inputs, labels)
if args.grad_accum > 1:
loss = loss / args.grad_accum
loss.backward()
epoch_loss += loss.item()
if args.grad_accum <= 1 or num_batches % args.grad_accum == 0:
if args.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(pre_model.parameters(), args.max_grad_norm)
mlm_optimizer.step()
pre_model.zero_grad()
LOGGER.info("MLMloss: {}".format(epoch_loss / num_batches))
# Evaluate on test set
LOGGER.info("Loading up best model for test evaluation...")
model.load_state_dict(torch.load(os.path.join(args.output_dir, "model.pt")))
score = evaluate(model, test_dataloader, train_dataloader, tokenizer, task=args.task, example=args.example,
device=args.device, args=args)
print("Best result for {}: Score: {}".format(args.task, score))
tb_writer.add_scalar("final_test_score", score, global_step)
tb_writer.close()
return score
if __name__ == "__main__":
args = read_args()
print(args)
scores = []
seeds = [33, 42, 19, 55, 34, 63]
for i in range(args.repeat):
if args.num_epochs > 0:
args.output_dir = ""
args.seed = seeds[i] if i < len(seeds) else random.randint(1, 999)
scores.append(train(args, i))
print("Average score so far:", np.mean(scores))
print(scores)
print(np.mean(scores), max(scores), min(scores))