-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix.h
170 lines (137 loc) · 3.89 KB
/
matrix.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#pragma once
#include "vector.h"
#include "string.h" //memcpy and memset
#include "defs.h"
/// Class representing a 3x3 matrix and some basic operations for working with matrices.
struct Matrix {
Matrix() {}
Matrix(float diag) { makeDiagonal(diag); }
void makeDiagonal(float diag) {
m[0][0] = m[1][1] = m[2][2] = diag;
m[0][1] = m[0][2] = m[1][0] = m[1][2] = m[2][0] = m[2][1] = 0.f;
}
Matrix(const Matrix &rhs) {
memcpy(m, rhs.m, sizeof(float)*9);
}
float determinant() const {
return m[0][0]*m[1][1]*m[2][2] + m[0][1]*m[1][2]*m[2][0]
+ m[0][2]*m[1][0]*m[2][1] - m[2][0]*m[1][1]*m[0][2]
- m[2][1]*m[1][2]*m[0][0] - m[2][2]*m[1][0]*m[0][1];
}
Matrix inverse() {
const float D = determinant();
if (D < 1e-12) {
return *this;
}
Matrix inv;
const float rD = 1.0f / D;
inv.m[0][0] = (m[1][1] * m[2][2] - m[2][1] * m[1][2]) * rD;
inv.m[0][1] =-(m[0][1] * m[2][2] - m[2][1] * m[0][2]) * rD;
inv.m[0][2] = (m[0][1] * m[1][2] - m[1][1] * m[0][2]) * rD;
inv.m[1][0] =-(m[1][0] * m[2][2] - m[2][0] * m[1][2]) * rD;
inv.m[1][1] = (m[0][0] * m[2][2] - m[2][0] * m[0][2]) * rD;
inv.m[1][2] =-(m[0][0] * m[1][2] - m[1][0] * m[0][2]) * rD;
inv.m[2][0] = (m[1][0] * m[2][1] - m[2][0] * m[1][1]) * rD;
inv.m[2][1] =-(m[0][0] * m[2][1] - m[2][0] * m[0][1]) * rD;
inv.m[2][2] = (m[0][0] * m[1][1] - m[1][0] * m[0][1]) * rD;
return inv;
}
Matrix transpose() {
Matrix t;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
t.m[i][j] = m[j][i];
}
}
return t;
}
Matrix& operator = (const Matrix& rhs) {
if (this != &rhs) {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
m[i][j] = rhs.m[i][j];
}
}
}
return *this;
}
Matrix& operator *= (const Matrix& rhs) { return *this = *this * rhs; }
Matrix& operator += (const Matrix& rhs) { return *this = *this + rhs; }
Matrix& operator -= (const Matrix& rhs) { return *this = *this - rhs; }
Matrix operator * (const Matrix& rhs) const {
Matrix res;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
res.m[i][j] = m[i][0] * rhs.m[0][j] +
m[i][1] * rhs.m[1][j] +
m[i][2] * rhs.m[2][j];
}
}
return res;
}
Matrix operator+ (const Matrix& rhs) const {
Matrix res;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
res.m[i][j] = m[i][j] + rhs.m[i][j];
}
}
return res;
}
Matrix operator- (const Matrix& rhs) const {
Matrix res;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
res.m[i][j] = m[i][j] - rhs.m[i][j];
}
}
return res;
}
void makeZero() { memset(m, 0, sizeof(float)*9); }
void makeIdentity() { makeDiagonal(1.f); }
float m[3][3];
};
inline Vector operator* (const Vector& v, const Matrix& a) {
return Vector(v.x * a.m[0][0] + v.y * a.m[1][0] + v.z * a.m[2][0] ,
v.x * a.m[0][1] + v.y * a.m[1][1] + v.z * a.m[2][1] ,
v.x * a.m[0][2] + v.y * a.m[1][2] + v.z * a.m[2][2]);
}
inline Vector& operator *= (Vector& v, const Matrix& a) {
return v = v * a;
}
inline Matrix rotateAroundX(float angle) {
Matrix a;
a.makeZero();
const float cosTheta = cosf(toRadians(angle));
const float sinTheta = sinf(toRadians(angle));
a.m[0][0] = 1;
a.m[1][1] = cosTheta;
a.m[1][2] = -sinTheta;
a.m[2][1] = sinTheta;
a.m[2][2] = cosTheta;
return a;
}
inline Matrix rotateAroundY(float angle) {
Matrix a;
a.makeZero();
const float cosTheta = cosf(toRadians(angle));
const float sinTheta = sinf(toRadians(angle));
a.m[0][0] = cosTheta;
a.m[0][2] = sinTheta;
a.m[1][1] = 1;
a.m[2][0] = -sinTheta;
a.m[2][2] = cosTheta;
return a;
}
inline Matrix rotateAroundZ(float angle) {
Matrix a;
a.makeZero();
const float cosTheta = cosf(toRadians(angle));
const float sinTheta = sinf(toRadians(angle));
a.m[0][0] = cosTheta;
a.m[0][1] = -sinTheta;
a.m[1][0] = sinTheta;
a.m[1][1] = cosTheta;
a.m[2][2] = 1;
return a;
}