forked from airanmehr/UTILS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimulation.py
executable file
·858 lines (759 loc) · 39.6 KB
/
Simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
'''
Copyleft Oct 10, 2015 Arya Iranmehr, PhD Student, Bafna's Lab, UC San Diego, Email: [email protected]
'''
from __future__ import division
import numpy as np;
import pandas as pd;
np.set_printoptions(linewidth=140, precision=5, suppress=True)
import subprocess, uuid, os,sys
import pylab as plt
import UTILS.Util as utl
stdout_old=sys.stdout;sys.stdout=open('/dev/null','w');import simuPOP as sim;sys.stdout=stdout_old # to avoid simuPop welcome message!
def sig(x): return 1./(1+np.exp(-x));
def logit(p): return (np.inf if p==1 else np.log(p/(1.-p)))
a='';
def fff(msg):
global a
a += msg
class MSMS:
@staticmethod
def Simulate(n=200, mu=2*1e-9, L=50000, Ne=1e6,r=1e-9,verbose=False,seed=None,intPos=False):
L=int(L)
a= MSMS.Song(F=n, mu=mu, L=L, Ne=Ne, r=r,verbose=verbose,seed=seed)
c=pd.Series(a.columns)
if c.round().value_counts().max()==1:
a.columns=c.round().astype(int)
elif c.astype(int).value_counts().max()==1:
a.columns = c.astype(int)
if intPos:
a.columns=map(int,np.sort(np.random.choice(L, a.shape[1], replace=False)))
return a
@staticmethod
def Song(F=200, mu=2*1e-9, L=50000, Ne=1e6,r=4e-9, uid=None, theta=None, msmsFile=None, dir=None,verbose=False,seed=None):
"""
Everything is exactly the sam
"""
# print 'mu: {} r:{} NE:{} ,theta={} '.format(mu,r,Ne,4*Ne*mu*L), theta
if msmsFile is not None:
pop=MSMS.load(filename=msmsFile)[0]
else:
if theta:
pop=MSMS.MSMS(n=F, numReps=1, theta=theta, rho=2*Ne*(L-1)*r, L=L, Ne=Ne, uid=uid, dir=dir,verbose=verbose,seed=seed)[0]
else:
pop=MSMS.MSMS(n=F, numReps=1, theta=2*Ne*mu*L, rho=2*Ne*(L-1)*r, L=L, Ne=Ne, uid=uid, dir=dir,verbose=verbose,seed=seed)[0]
pop.r=r
pop.Ne=Ne
pop.L=L
return pop
@staticmethod
def MSMS(n, numReps, theta, rho, L, Ne=None,uid=None,oneMutationEvery=None, dir=dir,verbose=False,seed=None):
"""
Returns a list of dataframe for each replicate
"""
if dir is None:
dir= utl.PATH.simout;dir+= 'msms/';
os.system('mkdir -p ' +dir)
if oneMutationEvery is not None:
nSS=L/oneMutationEvery
theta=nSS/sum(1./np.arange(1,n))
if uid is None:
uid=str(uuid.uuid4())
unique_filename = dir+uid+'.msms'
if seed is None:
seed=''
else:
seed=' -seed {} '.format(seed)
cmd="java -jar -Xmx2g ~/bin/msms/lib/msms.jar -ms {} {} -t {:.0f} -r {:.0f} {:.0f} -oFP 0.000000000000E00 {} > {}".format(n, numReps, theta, rho, L, seed,unique_filename)
if verbose:
print cmd
subprocess.call(cmd,shell=True)
return MSMS.load(unique_filename)
@staticmethod
def getSeed(filename):
file=open(filename);cmd=np.array(file.readline().strip().split(' '));seed=file.readline().strip()
return seed
@staticmethod
def load(filename):
n, R, L, posUnderSelection = MSMS.getParams(open(filename).readline())
lines=np.array(map(str.strip,open(filename).readlines()) )
posIdx= np.where(map(lambda x: x[:len('positions:')]=='positions:',lines))[0]
try:
theta = lines[np.where(map(lambda x: 'ThetaW Estimate Summaray:' in x, lines))[0][0]].split(':')[1].strip()
except:
theta = None
POS=[map(lambda x: (float(x)*L), lines[ii].split()[1:]) for ii in posIdx]
dfs=[pd.DataFrame(map(list ,lines[i +1 +range(n)]),columns=pos ) for i,pos in zip(posIdx,POS)]
for df in dfs:
df[df!='0']=1
df[df=='0']=0
df.L = L
if posUnderSelection is not None:
df.posUnderSelection = posUnderSelection * L
if theta is not None:
df.stat = pd.Series(theta.split(), index=['W', 'Pi', 'D']).astype(float)
return dfs
@staticmethod
def getParams(line):
"""
Args:
params: takes the first line of msmsm file
Returns:
n,R,L: number of individuals in the sample, the number of the replicates, genome length
"""
params=np.array(line.strip().split(' '))
offset=np.where(map(lambda x: 'ms'in x, params))[0][0]
if params[offset+1] == '-N':
i=3
else:
i=1
posUnderSelection = None
if '-Sp' in params: posUnderSelection = float(params[np.where(params == '-Sp')[0][0] + 1])
return int(params[offset + i]), int(params[offset + i + 1]), int(
params[np.where(params == '-r')[0][0] + 2]), posUnderSelection
@staticmethod
def fixDuplicatePositions(pos,L):
pos=pd.Series(range(len(pos)),index=pos)
posHits=pos.index.value_counts()
invalidPOS=posHits[posHits>1]
if not invalidPOS.shape[0]:
return pos.index.values
for invalidPos in invalidPOS.index:
mini=pos.loc[invalidPos].min()
maxi=pos.loc[invalidPos].max()
lowerBound=pos[pos==mini-1].index.max()
upperBound=pos[pos==maxi+1].index.min();
if maxi==pos.shape[0]-1: upperBound=L
if mini==0: lowerBound=0
validRange=np.arange((upperBound-lowerBound)/2) # only second and third quartiles,
offset=validRange+validRange.shape[0]/2 # first qunatulw
newPos=pos.index.values;
newPos[mini:maxi+1]=np.sort(np.random.choice(offset,pos.loc[invalidPos].shape[0],replace=False))+lowerBound
pos.index=newPos
assert pos.index.value_counts().max()==1
return pos.index.values
@staticmethod
def Selection(msms, Ne, n, numReplicates, theta, rho, window_size, s, origin_count, posUnderSelection, gens, path):
seed = ''
for ii, gen in enumerate(gens):
fname = path + '{}.msms'.format(int(gen))
if (not ii) and s != 0:
# while (nu0 < 0.95) or (nu0 > 0.99):
cmd = "{} -N {} -ms {} {} -t {} -r {} {:.0f} -SAA {} -SaA {} -SI {} 1 {} -Sp {} -oOC -Smark -oFP 0.000000000000E00 {} -SForceKeep -SFC -oTW >{}".format(
msms, Ne, n, numReplicates, theta, rho, window_size, 2 * Ne * s, Ne * s, gen / (4. * Ne),
origin_count / Ne,
posUnderSelection, ('-seed {}'.format(seed), '')[seed is ''], fname)
os.system(cmd)
else:
cmd = "{} -N {} -ms {} {} -t {} -r {} {:.0f} -SAA {} -SaA {} -SI {} 1 {} -Sp {} -oOC -Smark -oFP 0.000000000000E00 {} -SFC -SForceKeep -oTW >{}".format(
msms, Ne, n, numReplicates, theta, rho, window_size, 2 * Ne * s, Ne * s, gen / (4. * Ne),
origin_count / Ne,
posUnderSelection, ('-seed {}'.format(seed), '')[seed is ''], fname)
os.system(cmd)
if not ii: seed = MSMS.getSeed(fname)
@staticmethod
def SelectionFinale(msms, Ne, n, numReplicates, theta, rho, window_size, s, origin_count, posUnderSelection, gens,
path):
seed = ''
nu0 = 0
for ii, gen in enumerate(gens):
fname = path + '{}.msms'.format(int(gen))
if (not ii) and s != 0:
while (nu0 < 0.9):
cmd = "{} -N {} -ms {} {} -t {} -r {} {:.0f} -SAA {} -SaA {} -SI {} 1 {} -Sp {} -oOC -Smark -oFP 0.000000000000E00 {} -SForceKeep -SFC -oTW >{}".format(
msms, Ne, n, numReplicates, theta, rho, window_size, 2 * Ne * s, Ne * s, gen / (4. * Ne),
origin_count / Ne,
posUnderSelection, ('-seed {}'.format(seed), '')[seed is ''], fname)
os.system(cmd)
nu0 = MSMS.load(fname)[0].mean(0).loc[25000]
else:
cmd = "{} -N {} -ms {} {} -t {} -r {} {:.0f} -SAA {} -SaA {} -SI {} 1 {} -Sp {} -oOC -Smark -oFP 0.000000000000E00 {} -SFC -SForceKeep -oTW >{}".format(
msms, Ne, n, numReplicates, theta, rho, window_size, 2 * Ne * s, Ne * s, gen / (4. * Ne),
origin_count / Ne,
posUnderSelection, ('-seed {}'.format(seed), '')[seed is ''], fname)
os.system(cmd)
if not ii: seed = MSMS.getSeed(fname)
@staticmethod
def SelectionNu(msms, Ne, n, numReplicates, theta, rho, window_size, s, posUnderSelection, nu, path=None):
seed = ''
if path is None: path = '~/tmp.msms'
fname = path + '{}.msms'.format(nu)
cmd = "{} -N {} -ms {} {} -t {} -r {} {:.0f} -SAA {} -SaA {} -SF 0 {} -Sp {} -oOC -Smark -oFP 0.000000000000E00 {} -SFC -oTW >{}".format(
msms, Ne, n, numReplicates, theta, rho, window_size, 2 * Ne * s, Ne * s, nu, posUnderSelection,
('-seed {}'.format(seed), '')[seed is ''], fname)
print cmd
os.system(cmd)
return MSMS.load(fname)
@staticmethod
def SelectionNuForward(msms, Ne, n, numReplicates, theta, rho, window_size, s, origin_count, posUnderSelection,
gens, path):
nu0 = 0
for ii, gen in enumerate(gens):
fname = path + '{}.msms'.format(gen)
if (not ii) and s != 0:
while (nu0 < 0.95) or (nu0 > 0.99):
cmd = "{} -N {} -ms {} {} -t {} -r {} {:.0f} -SAA {} -SaA {} -SI {} 1 {} -Sp {} -oOC -Smark -oFP 0.000000000000E00 {} -SFC -oTW >{}".format(
msms, Ne, n, numReplicates, theta, rho, window_size, 2 * Ne * s, Ne * s, gen / (4. * Ne),
origin_count / Ne,
posUnderSelection, ('-seed {}'.format(seed), '')[seed is ''], fname)
os.system(cmd)
nu0 = MSMS.load(fname)[0].mean(0).loc[25000]
print nu0, gen, cmd
if not ii: seed = MSMS.getSeed(fname)
class Simulation:
@staticmethod
def setSeed(seed):
if seed is None: return
sim.setRNG('rand', seed + 1);
np.random.seed(seed)
@staticmethod
def load(ExperimentName, s=0.1, L=50000, experimentID=0, nu0=0.005, isFolded=False, All=False, startGeneration=0,
maxGeneration=50, numReplicates=3, numSamples=5, step=10, replicates=None, coverage=np.inf):
path='{}{}/simpop/'.format(utl.PATH.simout, ExperimentName) + Simulation.getSimulationName(s=s, L=L, experimentID=experimentID, initialCarrierFreq=nu0, isFolded=isFolded) + '.pkl'
sim= pd.read_pickle(path)
sim.savedPath=path
if replicates is not None: sim.setReplicates(sorted(replicates))
elif numReplicates is not None: sim.setReplicates(range(numReplicates))
if coverage != np.inf:
sim.Xi = sim.X
sim.X = sim.C.loc[coverage] / sim.D.loc[coverage].astype(float)
sim.X = np.array(map(lambda x: utl.roundto(x, 5), sim.X.reshape(-1) * 1e4)).reshape(sim.X.shape) / 1e4
sim.CD=sim.getCD(coverage)
sim.CD.columns.names=['REP','GEN','READ']
if not All: sim.setSamplingTimes(maxGeneration=min(maxGeneration,sim.getGenerationTimes()[-1]),numSamples=numSamples,step=step,startGeneration=startGeneration)
return sim
@staticmethod
def getSimulationName(s,L,experimentID,initialCarrierFreq,isFolded,msms=False):
if msms:
return 'L{:.0f}K.{:04.0f}'.format(L/1000,experimentID)
if s:
return 'Nu{:E}.s{:E}.L{:.0f}K.{:04.0f}{}'.format(np.round(float(initialCarrierFreq), 3), s, L / 1000,
experimentID, ('', '.Folded')[isFolded])
else:
return 'Nu{:E}.s{:E}.L{:.0f}K.{:04.0f}{}'.format(0, s * 100, L / 1000, experimentID,
('', '.Folded')[isFolded])
def setReplicates(self,replicates):
self.numReplicates=len(replicates)
self.X=self.X[:,:,replicates]
self.C = self.C.apply(lambda x: x[:, :, replicates])
self.D = self.D.apply(lambda x: x[:, :, replicates])
def __init__(self, outpath=utl.PATH.simout, N=1000, generationStep=10, maxGeneration=None,
s=0.05, r=4e-9, Ne=1e6, mu=2e-9, F=200, h=0.5, L=50000, startGeneration=0, numReplicates=3, H0=None,
foldInitialAFs=False, save=True, foutName=None,
doForwardSimulationNow=True, experimentID=-1,
msmsFile=None,initialCarrierFreq=0, ExperimentName=None, simulateNeutrallyFor=0,
initialNeutralGenerations=0, ignoreInitialNeutralGenerations=True,
makeSureSelectedSiteDontGetLost=True, onlyKeep=None, verbose=0, sampingTimes=None, minIncrease=0,
model=None,initDiploidPop=None,posUnderSelection=-1,haplotypes=False,seed=None,recombinator=None
):
"""
A General Simulation Class; with params
H0: Dataframe F x m for F individuals and m segregation sites ; Initial Haplotypes; dataframe with columns as positions
"""
self.recombinator=recombinator
if seed is not None:
Simulation.setSeed(seed)
self.s = s;
self.r = r;
self.Ne = Ne;
self.mu = mu;
self.F = F;
self.h = h;
self.L = int(L);
self.startGeneration = startGeneration;
self.numReplicates = numReplicates;
self.posUnderSelection = -1
self.initDiploidPop = initDiploidPop
self.initialCarrierFreq= initialCarrierFreq if initialCarrierFreq else 1./self.F
if foutName is not None:
self.uid=foutName
self.uidMSMS=None
elif experimentID>=0:
self.uid=Simulation.getSimulationName(self.s, self.L, self.experimentID, initialCarrierFreq=self.initialCarrierFreq, isFolded=self.foldInitialAFs)
self.uidMSMS=Simulation.getSimulationName(self.s, self.L, self.experimentID, initialCarrierFreq=self.initialCarrierFreq, isFolded=self.foldInitialAFs,msms=True)
else:
self.uid=str(uuid.uuid4())
self.uidMSMS=self.uid
if H0 is None:
self.simulateH0()
H0=self.H0
else:
self.setH0(H0);
if posUnderSelection >= 0:
if self.positions is None:
self.positions=map(int, self.initDiploidPop.lociPos())
self.set_posUnderSelection(posUnderSelection)
assert ExperimentName != None
self.save=save
self.model=model
self.minIncrease = minIncrease
self.samplingTimes=sampingTimes
self.initialNeutralGenerations=initialNeutralGenerations
self.onlyKeep=onlyKeep
self.makeSureSelectedSiteDontGetLost=makeSureSelectedSiteDontGetLost
self.ignoreInitialNeutralGenerations=ignoreInitialNeutralGenerations
self.msmsFile=msmsFile;self.outpath=outpath; self.outpath=outpath ; self.N=N; self.generationStep=generationStep; self.maxGeneration= maxGeneration;
self.foldInitialAFs=foldInitialAFs;self.doForwardSimulationNow=doForwardSimulationNow;self.experimentID=experimentID
self.simulateNeutrallyFor=simulateNeutrallyFor
self.setH0(H0);
if not os.path.exists(self.outpath) : os.makedirs(self.outpath)
self.outpath+=ExperimentName
if not os.path.exists(self.outpath) : os.makedirs(self.outpath)
self.outpathmsms=self.outpath+'/msms/';self.outpath+='/simpop/'
if not os.path.exists(self.outpath) : os.makedirs(self.outpath)
if not os.path.exists(self.outpathmsms) : os.makedirs(self.outpathmsms)
if self.maxGeneration is None: self.maxGeneration=Simulation.getFixationTime(self.s, Ne=self.F, roundto10=True)
self.theta=2*self.Ne*self.mu*self.L
self.pops=[]
if self.model is None:
import simuPOP.demography as dmg
self.model=dmg.LinearGrowthModel(T=self.maxGeneration, N0=self.N, NT=self.N)
if self.doForwardSimulationNow:
self.forwardSimulation()
@staticmethod
def simulateSingleLoci(nu0=0.005, T=100, s=0.1, N=1000,verbose=True,h=0.5,seed=None):
if verbose:
print '.',
step = 1
Simulation.setSeed(seed)
pop = sim.Population(size=N, ploidy=2, loci=[1],infoFields=['fitness']);sim.initGenotype(pop, prop=[1-nu0,nu0]);simulator = sim.Simulator(pop.clone(), rep=1);
# sim.stat(pop, alleleFreq=[0]); print pop.dvars().alleleFreq[0][1]
global a;a = "0;;{}\n".format(nu0)
simulator.evolve(initOps=[sim.InitSex()],
preOps=sim.MapSelector(loci=0, fitness={(0, 0): 1, (0, 1): 1 + s *h, (1, 1): 1 + s}),
matingScheme=sim.RandomMating(), postOps=[sim.Stat(alleleFreq=[0], step=step),
sim.PyEval("'%d;;' % (gen+1)", reps=0, step=step,
output=fff), sim.PyEval(
r"'{}\n'.format(map(lambda x: round(x[1],5),alleleFreq.values())[0])", step=step, output=fff)],
gen=T)
return pd.DataFrame(zip(*map(lambda x: x.split(';;'), a.strip().split('\n')))).T.set_index(0)[1].astype(float)
def createInitialDiploidPopulation(self):
"""
initHaps : np 2D array which m x nSS where m i number of individual haps and nSS is number of SS
return a homozygote diploid population which every haplotype is copied n times
"""
if self.initDiploidPop is not None: return self.initDiploidPop
assert int(2*self.N/self.F)==2*self.N/float(self.F) # N should be a multiplier of F
nSS=self.H0.shape[1];n=int(self.N/self.F)
try:
pop = sim.Population(size=self.N, ploidy=2, loci=nSS,lociPos=list(self.positions), infoFields='fitness')
except:
import traceback
print(traceback.format_exc())
print list(self.positions), nSS,n,self.H0.shape[0]
exit()
assert (self.N % self.H0.shape[0]) ==0
H= [[list(h.values),list(h.values)] for _ in range(n) for _,h in self.H0.iterrows()]
for (i,h) in zip(pop.individuals(),H): # for each indv assing first and second chromosome
i.setGenotype(h[0],0 );i.setGenotype(h[1],1 ) #homozygote population of diploid
# sim.stat(pop, alleleFreq=range(nSS));print np.array([pop.dvars().alleleFreq[x][1] for x in range(nSS)])
return pop
@staticmethod
def getGT(pop, i=None, pos=None):
if i == None and pos == None:
df = pd.concat([pd.DataFrame([list(i.genotype(0)) for i in pop.individuals()]),
pd.DataFrame([list(i.genotype(1)) for i in pop.individuals()])],
keys=[0, 1]).sort_index().reorder_levels([1, 0]).sort_index()
df.columns = map(int, pop.lociPos())
return df
i = np.where(np.array(pop.lociPos()).astype(int) == pos)[0][0]
a, b = [], []
for ind in pop.individuals():
a += [ind.genotype(0)[i]]
b += [ind.genotype(1)[i]]
return pd.concat([pd.Series(a), pd.Series(b)], keys=[0, 1]).reorder_levels([1, 0]).sort_index()
@staticmethod
def createDiploidPopulationFromDataFrame(df):
"""
initHaps : np 2D array which m x nSS where m i number of individual haps and nSS is number of SS
return a homozygote diploid population which every haplotype is copied n times
"""
pop = sim.Population(size=df.shape[0]/2, ploidy=2, loci=df.shape[1], lociPos=list(df.columns), infoFields='fitness')
for j,i in enumerate(pop.individuals()): # for each indv assing first and second chromosome
i.setGenotype(df.loc[j].loc[0].tolist(),0 );i.setGenotype(df.loc[j].loc[1].tolist(),1 )
return pop
@staticmethod
def _simualtePop(pop, s=0, h=0.5, r=2e-8, siteUnderSelection=0,gen=1,recombinator=None,seed=None):
"Gets population and returns population"
Simulation.setSeed(seed)
simulator = sim.Simulator(pop.clone(), rep=1)
if recombinator is None:recombinator=sim.Recombinator(intensity=r)
simulator.evolve(
initOps=[sim.InitSex()],
preOps=sim.MapSelector(loci=siteUnderSelection, fitness={(0, 0): 1, (0, 1): 1 + s * h, (1, 1): 1 + s}),
matingScheme=sim.RandomMating(ops=recombinator),
gen=gen)
return simulator.population(0).clone()
@staticmethod
def _simualte(pop,s,h,r,siteUnderSelection,positions,startGeneration,generationStep,maxGeneration,model=None,makeSureSelectedSiteDontGetLost=True):
"Gets population and returns Dataframe, Static method"
N = int(pop.popSize())
if model is None:
import simuPOP.demography as dmg
model = dmg.LinearGrowthModel(T=maxGeneration, N0=N, NT=N)
simulator = sim.Simulator(pop.clone(), rep=1)
global a;a = ""
pops=[]
step=1# this is slow but safe, dont change it
simulator.evolve(
initOps=[sim.InitSex()],
preOps=sim.MapSelector(loci=siteUnderSelection, fitness={(0, 0): 1, (0, 1): 1 + s * h, (1, 1): 1 + s}),
matingScheme=sim.RandomMating(ops=sim.Recombinator(intensity=r),subPopSize=model),
postOps=[sim.Stat(alleleFreq=range(int(pop.numLoci()[0])), step=step), sim.PyEval("'Gen %4d;;' % (gen+1)", reps=0,step= step, output=fff), sim.PyEval(r"'{},'.format(map(lambda x: round(x[1],5),alleleFreq.values()))", step=step, output=fff),sim.PyOutput('\n', reps=-1, step=step, output=fff)],
gen = maxGeneration)
# idx=np.arange(self.generationStep-1,self.maxGeneration,self.generationStep)+self.initialNeutralGenerations
print a
_,data=zip(*map(lambda x: x.split(';;'),a.strip().split('\n')))
data=np.array(map(eval,data))[:,0,:]
print data
# if data[-1, self.siteUnderSelection] >= self.initialCarrierFreq + self.minIncrease or self.s == 0 or not self.makeSureSelectedSiteDontGetLost:
if data[-1, siteUnderSelection] or s == 0 or not makeSureSelectedSiteDontGetLost:
try:
pops+=[simulator.extract(0) ]
except:
print 'Error'
return data[int(startGeneration/generationStep):,:]
else:
return Simulation._simualte()
def simualte(self):
"Gets population and returns Dataframe, Class method"
import simuPOP.demography as dmg
# model=dmg.ExponentialGrowthModel(T=50, N0=1000, NT=200)
simulator = sim.Simulator(self.initDiploidPop.clone(), rep=1)
# sim.dump(self.initDiploidPop)
global a;a = ""
if self.recombinator is None:
self.recombinator=sim.Recombinator(intensity=self.r)
step=1# this is slow but safe, dont change it
simulator.evolve(
initOps=[sim.InitSex()],
preOps=sim.MapSelector(loci=self.siteUnderSelection, fitness={(0,0):1, (0,1):1+self.s*self.h, (1,1):1+self.s}),
matingScheme=sim.RandomMating(ops=self.recombinator,subPopSize=self.model),
postOps=[sim.Stat(alleleFreq=range(len(self.positions)), step=step),
sim.PyEval("'Gen %4d;;' % (gen+1)", reps=0,step= step, output=fff), sim.PyEval(r"'{},'.format(map(lambda x: round(x[1],5),alleleFreq.values()))", step=step, output=fff),sim.PyOutput('\n', reps=-1, step=step, output=fff)],
gen = self.maxGeneration)
# idx=np.arange(self.generationStep-1,self.maxGeneration,self.generationStep)+self.initialNeutralGenerations
_,data=zip(*map(lambda x: x.split(';;'),a.strip().split('\n')))
data=np.array(map(eval,data))[:,0,:]
# if data[-1, self.siteUnderSelection] >= self.initialCarrierFreq + self.minIncrease or self.s == 0 or not self.makeSureSelectedSiteDontGetLost:
if data[-1, self.siteUnderSelection] or self.s == 0 or not self.makeSureSelectedSiteDontGetLost:
try:
self.pops+=[simulator.extract(0) ]
except:
print 'Error'
return data[int(self.startGeneration/self.generationStep):,:]
else:
# print pd.Series(data[:, self.siteUnderSelection])
return self.simualte()
def simulateH0(self):
self.H0=MSMS.Song(F=self.F, L=self.L, Ne=self.Ne, r=self.r, mu=self.mu,uid=self.uidMSMS)
def set_siteUnderSelection(self,x):
self.siteUnderSelection=x
self.posUnderSelection=self.positions[self.siteUnderSelection]
def set_posUnderSelection(self,x):
self.posUnderSelection=x
self.siteUnderSelection=np.where(self.positions==self.posUnderSelection)[0][0]
def setH0(self,H0):
self.H0=H0
self.positions=self.H0.columns.values
self.F=self.H0.shape[0]
def set_BeneficialLoci(self,selectionOnRandomSite=False,siteUnderSelection=None,posUnderSelection =None):
if selectionOnRandomSite:
self.set_siteUnderSelection(np.random.randint(0,self.H0.shape[1]))
elif siteUnderSelection is not None:
self.set_siteUnderSelection(siteUnderSelection)
elif posUnderSelection is not None:
self.set_siteUnderSelection(posUnderSelection)
else:
if not self.s:
self.set_siteUnderSelection(self.X0.argmax())
else:
sites=np.sort(np.where(self.X0== self.initialCarrierFreq)[0]);
if not len(sites):
sites=np.sort(np.where(( self.X0 <= self.initialCarrierFreq +0.025) & ( self.X0 >= self.initialCarrierFreq -0.025) ) [0]);
if not len(sites):
print 'Try again. No site at freq ',self.initialCarrierFreq, self.uid; return
self.set_siteUnderSelection(sites[np.random.randint(0,len(sites))])
def createInitHaps(self):
assignPositions=True
if self.H0 is None:
H0 = MSMS.Song(F=self.F, L=self.L, Ne=self.Ne, r=self.r, mu=self.mu, uid=self.uidMSMS,
msmsFile=self.msmsFile, dir=self.outpathmsms)
else:
H0 = self.H0
assignPositions=False
if self.foldInitialAFs:
idx = H0.mean(0) > 0.5
H0.iloc[:, idx.values] = 1 - H0.iloc[:, idx.values]
self.setH0(H0)
if assignPositions:
self.positions_msms = self.H0.columns.values.copy(True)
self.positions = sorted(np.random.choice(self.L, self.H0.shape[1], replace=False))
self.H0 = pd.DataFrame(self.H0.values, columns=self.positions)
self.X0 = self.H0.mean(0).values
def forwardSimulation(self):
"""
returns np 3D array T x nSS x R which T=|{t_1,t_2,..}| (nnumber of times), nSS is number of SS , and R is the number of replicates
"""
import numpy as np
# df = pd.DataFrame([list(i.genotype(j)) for j in range(2) for i in self.initDiploidPop.individuals()])
if self.posUnderSelection<0 and self.initDiploidPop is None:
self.createInitHaps()
self.set_BeneficialLoci()
self.initDiploidPop=self.createInitialDiploidPopulation()
elif self.initDiploidPop is None:
self.createInitHaps()
self.initDiploidPop = self.createInitialDiploidPopulation()
# self.X0=self.H0.mean().values
else:
self.X0=Simulation.getGT(self.initDiploidPop).mean().values
# df = pd.DataFrame([list(i.genotype(j)) for j in range(2) for i in self.initDiploidPop.individuals()])
# print pd.concat([df.mean(),self.H0.mean().reset_index(drop=True)],1)
self.X=np.array([self.simualte() for _ in range(self.numReplicates)]).swapaxes(0, 2).swapaxes(0, 1)
self.X=np.append(np.tile(self.X0[:,None],(1,self.X.shape[2]))[None,:,:],self.X,axis=0)
self.sampleDepths()
if self.save:
pd.to_pickle(self,self.outpath+self.uid+'.pkl')
# self.createDF()
def getGenerationTimes(self,step=None,includeZeroGeneration=True):
if step is None: step=self.generationStep
times= np.arange(0,self.maxGeneration-self.startGeneration+1,step)
if includeZeroGeneration:
return times
else:
return times[1:]
def getTrueGenerationTimes(self,step=None,includeZeroGeneration=True):
if step is None: step=self.generationStep
times= np.arange(self.startGeneration,self.maxGeneration+1,step)
if includeZeroGeneration:
return times
else:
return times[1:]
@staticmethod
def getFixationTime(s,Ne=200,roundto10=True):
if s==0: s=0.01
t=-4*int(logit(1./Ne)/s)
if roundto10:
return (t//10 +1)*10
else:
return t
@staticmethod
def sampleInitSamplingTime(s,Ne=200,phase=0,samplingWindow=50,startOfEpoch=False):
fix=Simulation.getFixationTime(s, Ne=Ne)
if phase==0: lower,upper=(0, fix-samplingWindow)
if phase==1: lower,upper=(0, fix/3-samplingWindow)
if phase==2: lower,upper=(fix/3, 2*fix/3-samplingWindow)
if phase==3: lower,upper=(2*fix/3, fix-samplingWindow)
if startOfEpoch:
rnd=lower
else:
rnd=np.random.randint(lower,max(lower,upper)+1)
return int(rnd)//10 *10
@staticmethod
def sampleStartTimesforAlls(samplingWindow=50):
S=[0.1, 0.05, 0.02, 0.01,0]
for phase in [1,2,3]:
pd.DataFrame([[Simulation.sampleInitSamplingTime(s, phase=phase, samplingWindow=samplingWindow, startOfEpoch=True) for _ in range(100)] for s in S], index=S).T.to_pickle('/home/arya/out/startSamplingTimes.phase{}.sampleWin{}.pkl'.format(phase, samplingWindow))
def setSamplingTimes(self,maxGeneration=None,numSamples=5,step=None,startGeneration=None):
GT=pd.Series(range(len(self.getTrueGenerationTimes(includeZeroGeneration=True))),index=self.getTrueGenerationTimes(includeZeroGeneration=True))
if startGeneration is not None: self.startGeneration=startGeneration
if maxGeneration is not None: self.maxGeneration = maxGeneration
if step is not None:self.generationStep=step
else: self.generationStep=(self.maxGeneration-self.startGeneration)/numSamples
i = GT.loc[self.getTrueGenerationTimes(includeZeroGeneration=True)[:self.X.shape[0]]].values
self.X = self.X[i, :, :]
self.C = self.C.apply(lambda x: x[i, :, :])
self.D = self.D.apply(lambda x: x[i, :, :])
self.X0=self.X[0,:,0]
@staticmethod
def getSamplingTimeBasedOnFreq(sim,phase,samplingWin=50):
carrier_freq=[0.1,0.5,0.9][phase-1]
a= np.where(sim.X[:,sim.siteUnderSelection,:].mean(1)>carrier_freq)[0]
ft=sim.getTrueGenerationTimes().max()
if len(a):
t= sim.getTrueGenerationTimes()[np.where(sim.X[:,sim.siteUnderSelection,:].mean(1)>carrier_freq)[0].min()]
else:
t=sim.getTrueGenerationTimes().max()
return min(t,ft-samplingWin)
@staticmethod
def Load(s=0.1, experimentID=0, nu0=0.005, numReplicates=3, step=10, ModelName='TimeSeries', samplingWindow=50,
L=50000, depthRate=30):
if not s: nu0=0.005
sim = Simulation.load(s=s, experimentID=experimentID % 100, nu0=nu0, numReplicates=numReplicates, step=step,
ExperimentName=ModelName, All=True, L=L, replicates=range(numReplicates),
coverage=depthRate)
sim.experimentID=experimentID
startGen=0
sim.setSamplingTimes(maxGeneration=min(startGen+samplingWindow,sim.getTrueGenerationTimes()[-1]),step=step,startGeneration=startGen)
sim.createDF()
return sim
def getHardSweepMutations(self):
MAF=1./self.H0.shape[0]
dups=self.H0[self.H0.duplicated()]
x0=pd.Series(self.X0, index=self.positions)
hard=[]
for _,dup in dups.iterrows():
numDup=self.H0.apply(lambda x:(x==dup).all(),axis=1).sum()
hard=np.append(hard, (dup*x0==numDup*MAF).replace({False:None}).dropna().index.values)
hard=np.sort(np.append(hard,(x0==MAF).replace({False:None}).dropna().index.values).astype(int))
return hard
@property
def df(self):
reps=range(self.numReplicates)
self.df=pd.concat([pd.DataFrame(self.X[:,:,r],columns=self.positions,index=pd.MultiIndex.from_product([[r],range(self.X.shape[0])],names=['REP','TIME'])).T for r in reps],axis=1)
if self.numReplicates==1:
self.df=self.df[0]
return self.df
def computeCDi(self, EE, depthRate):
E = EE.loc[depthRate]
index = pd.Series(range(E.shape[0]), E.index)
C = pd.concat([pd.DataFrame(self.C.loc[depthRate][:, :, r], columns=self.H0.columns,
index=pd.MultiIndex.from_product([[r], self.getTrueGenerationTimes()],
names=['REP', 'GEN'])).T for r in
range(self.numReplicates)], axis=1)
D = pd.concat([pd.DataFrame(self.D.loc[depthRate][:, :, r], columns=self.H0.columns,
index=pd.MultiIndex.from_product([[r], self.getTrueGenerationTimes()],
names=['REP', 'GEN'])).T for r in
range(self.numReplicates)], axis=1)
self.cd = pd.concat([pd.Series(zip(C[i], D[i])) for i in C.columns], axis=1)
self.cd.columns = C.columns;
self.cd.index = C.index
self.cdi = self.cd.applymap(lambda x: index.loc[x])
def sampleDepths(self,depths = [30, 100, 300]):
self.D = pd.Series(None, index=depths)
self.C = pd.Series(None, index=depths)
for depthRate in depths:
self.D.loc[depthRate] = np.random.poisson(depthRate,
self.X.shape[0] * self.X.shape[1] * self.X.shape[2]).reshape(
self.X.shape).astype(object)
self.C.loc[depthRate] = np.array([np.random.binomial(d, x) for x, d in
zip(self.X.reshape(-1), self.D.loc[depthRate].reshape(-1))]).reshape(
self.X.shape).astype(object)
@staticmethod
def sampleDepthX(X,cov):
D= np.random.poisson(cov,X.size)
C= np.array([np.random.binomial(d, x) for x, d in zip(X, D)])
return C,D
@staticmethod
def sampleDepthXSeries(X,cov):
C,D=Simulation.sampleDepthX(X.values,cov)
a=pd.DataFrame([C,D],columns=X.index,index=['C','D']).T
return a
@staticmethod
def computeCDdf(a, E):
index = pd.Series(range(E.shape[0]), E.index)
def f(x):
try:
return index.loc[x]
except:
return -1
z=a.groupby(level=[0,1],axis=1).apply(lambda x: x.apply(lambda y:(y.iloc[0],y.iloc[1]),1)).applymap(f)
return z[(z<0).sum(1)==0]
def getCD(self,coverage):
T=self.getTrueGenerationTimes()
Ti=T
if T[-1]!=self.C[coverage].shape[0]-1: Ti=range(self.C[coverage].shape[0])
C=pd.concat([pd.DataFrame(self.C[coverage][Ti,:,i],columns=self.positions,index=T).T for i in range(self.numReplicates)],1,keys=range(self.C[coverage].shape[2]))
D=pd.concat([pd.DataFrame(self.D[coverage][Ti,:,i],columns=self.positions,index=T).T for i in range(self.numReplicates)],1,keys=range(self.C[coverage].shape[2]))
CD=pd.concat([C,D],1,keys=['C','D']).reorder_levels([1,2,0],1).sort_index(1)
CD.columns.names=['REP','GEN','READ']
return CD
@staticmethod
def Recombinator(rate, loci):
"""
Recombination at loci, after variant index. Loci can take value in [0, NumSNPs-1]
Args:
rate: recombination rate
loci: index of the loci in which rec is is being performed
Returns: recombinator which is an argument of Simulation, _simulation2 and evolve. It can be list of loci
"""
if not isinstance(loci, list):
loci = [loci]
return sim.Recombinator(intensity=rate, loci=loci)
class POP:
@staticmethod
def createISOGenicDiploidPopulation(df):
"""
initHaps : np 2D array which m x nSS where m i number of individual haps and nSS is number of SS
return a homozygote diploid population which every haplotype is copied n times
"""
pop = sim.Population(size=df.shape[0], ploidy=2, loci=df.shape[1], lociPos=list(df.columns),
infoFields='fitness')
for (i, (_, h)) in zip(pop.individuals(), df.iterrows()):
i.setGenotype(h.tolist(), 0);
i.setGenotype(h.tolist(), 1)
return pop
@staticmethod
def toDF(pop):
x = pd.concat(map(pd.DataFrame, [map(list, [i.genotype(0), i.genotype(1)]) for i in pop.allIndividuals()]),
keys=range(pop.popSize()))
x.columns = list(pop.lociPos())
return x
@staticmethod
def freq(pop):
sim.stat(pop, alleleFreq=range(pop.numLoci()[0]), vars=['alleleFreq'])
return pd.Series(pd.DataFrame(pop.vars()['alleleFreq']).loc[1].reindex().values,map(int,pop.lociPos())).fillna(0)
@staticmethod
def Haplotypes(pop,counts=False,unique=True):
if isinstance(pop,sim.Population):
a=POP.toDF(pop)
else:
a=pop
H=a.reset_index(drop=True)
H.columns=map(int,H.columns)
b=H.loc[H.sum(1).sort_values().index].astype(str).apply(lambda x: ''.join(x), 1).reset_index(drop=True)
if counts:
return b.value_counts().sort_index()
else:
if unique:
b=b.drop_duplicates()
return b.loc[b.sort_values().index].reset_index(drop=True)
@staticmethod
def establish(H, ba, k=5):
N = H.shape[0]
car = H[H[ba] == 1]
n = car.shape[0]
return pd.concat([car.iloc[np.random.choice(n, k)], H.iloc[np.random.choice(N, N - k)]]).reset_index(drop=True)
class Drift:
@staticmethod
def nextGeneration(N,x):
return (np.random.random(N)<=x).mean()
@staticmethod
def sampleReads(D,x):
return [Drift.sampleReadsDerived(D,x),D]
@staticmethod
def sampleReadsDerived(D,x):
return (np.random.random(D)<=x).sum()
@staticmethod
def simulateAF(N,x,T):
Xt=[]
for i in range(1, T[-1]+1):
x=Drift.nextGeneration(N,x)
if i in T:Xt.append(x)
return Xt
@staticmethod
def simulatePoolCD(N,n,cd):
x=cd[0].C/float(cd[0].D)
D=cd.xs('D',level=1)
Xt=[]
for i in range(1, D.index[-1]+1):
x=Drift.nextGeneration(N,x)
if i in D.index:
y=Drift.nextGeneration(n,x)
Xt.append(Drift.sampleReads(D[i], y))
return pd.DataFrame([[cd[0].C,cd[0].D]]+Xt,index=D.index,columns=['C','D'])
@staticmethod
def simulatePoolDerivd(N,n,cd):
x=cd[0].C/float(cd[0].D)
D=cd.xs('D',level=1)
Xt=[]
for i in range(1, D.index[-1]+1):
x=Drift.nextGeneration(N,x)
if i in D.index:
Xt+=[Drift.sampleReadsDerived(D[i], Drift.nextGeneration(n,x))]
return [cd[0].C]+Xt
@staticmethod
def simulatePools(N,cd,M):
return pd.concat([Drift.simulatePool(N,cd) for _ in range(M)],keys=range(M))
@staticmethod
def simulateAFs(N,x,T,M):
return pd.DataFrame([Drift.simulateAF(N,x,T) for _ in range(M)],columns=T)