-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpoint.py
385 lines (311 loc) · 14.9 KB
/
point.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
from ctypes import *
import numpy as np
import imageio
import cv2
from matplotlib import pyplot as plt
import pRANSAC
from datetime import datetime
from numba.cuda.random import create_xoroshiro128p_states, xoroshiro128p_uniform_float32
import vtk
from numba import vectorize, cuda, jit
from multiprocessing import Pool
import os
import pickle
from scipy.optimize import linear_sum_assignment
from sys import exit
import show_vtk
path = None#"/media/mahdi/4418B81419D11C10/media/private/dataset/scannet/0/img/"
class Util:
def __init__(self):
intrinsic = np.loadtxt(path + 'intrinsic/intrinsic_depth.txt')
self.fx = intrinsic[0, 0] #577.590698
self.fy = intrinsic[1, 1]#578.729797
self.cx = intrinsic[0, 2]#318.905426
self.cy = intrinsic[1, 2]#242.683609
self.EGBIS_LIB = cdll.LoadLibrary('./libegbis.so')
self.EGBIS_LIB.segmentByNormal.restype = py_object
def point_cloud(self, depth, rgb):
"""Transform a depth image into a point cloud with one point for each
pixel in the image, using the camera transform for a camera
centred at cx, cy with field of view fx, fy.
depth is a 2-D ndarray with shape (rows, cols) containing
depths from 1 to 254 inclusive. The result is a 3-D array with
shape (rows, cols, 3). Pixels with invalid depth in the input have
NaN for the z-coordinate in the result.
"""
rows, cols = depth.shape
c, r = np.meshgrid(np.arange(cols), np.arange(rows), sparse=True)
valid = (depth > 0)
z = np.where(valid, depth / 1000, np.nan)
x = np.where(valid, z * (c - self.cx) / self.fx, np.nan)
y = np.where(valid, z * (r - self.cy) / self.fy, np.nan)
points = np.dstack((x, y, z)).astype(np.float32)
#if depth.shape != rgb.shape:
# rgb = cv2.resize(rgb, (depth.shape[1], depth.shape[0]), interpolation=cv2.INTER_NEAREST).astype(np.uint32)
#color = rgb[:,:,2]<<16 + rgb[:,:,1]<<8 + rgb[:,:,0]
#color = (rgb[:, :, 1] << 16 | rgb[:, :, 0] << 8 | rgb[:, :, 2])/(256*256*256)
#color = np.ones(color.shape) * 3
#xyzrgb = np.dstack((points, color))
#cloud.from_3d_array(xyzrgb.astype(np.float32))
return points
def create_normal_image(self, normal, points):
# normal = cloud.make_IntegralImageNormalEstimation()
#normal.set_NormalSmoothingSize(20)
#normal.set_NormalEstimation_Method_COVARIANCE_MATRIX()
#ncloud = normal.compute()
#nImage = ncloud.to_3d_array()
nImage = np.zeros((points.shape[0], points.shape[1], 4)).astype(np.float32)
self.EGBIS_LIB.computeNormal(points.astype(np.float32).ctypes.data, c_int(points.shape[0]), c_int(points.shape[1]), nImage.ctypes.data)
nImage = (nImage + 1) / 2
#nImage[np.isnan(nImage)] = 0
nImage = nImage * 255
return nImage[:, :, 0:3].astype(np.float32)
def segment_image(self, points, sigma=1.5, k = 200, min_size = 200 ):
segImage = np.zeros((points.shape[0], points.shape[1], 3)).astype(np.float32)
normalImage = np.zeros((points.shape[0], points.shape[1], 4)).astype(np.float32)
num_ccs = c_int(0)
(sizes, ids, (xs, yx)) = self.EGBIS_LIB.segmentByNormal(points.astype(np.float32).ctypes.data, points.shape[0], points.shape[1], normalImage.ctypes.data, segImage.ctypes.data, c_float(sigma), c_float(k),
c_int(min_size), byref(num_ccs))
normalImage = (normalImage + 1) * 127.5
#plt.imshow(normalImage[:, :, 0:3].astype(np.uint8), interpolation='nearest')
#plt.imshow(segImage.astype(np.uint8), interpolation='nearest')
#plt.show()
#exit(0)
return normalImage[:, :, 0:3].astype(np.uint8), segImage, sizes, xs, yx, ids
util = None
#path = "/media/mahdi/4418B81419D11C10/media/private/dataset/scannet/0/img/"
def extractPlanes(I, t0=[0,0,0]):
depth = imageio.imread(path + 'depth/' + str(I) + '.png')
T = np.loadtxt(path + 'pose/' + str(I) + '.txt')
R = T[0:3, 0:3]
t = T[0:3, 3] - t0
# color = imageio.imread('color/0.jpg')
points = util.point_cloud(depth, None)
points = points.dot(R.T) + t
normalImg, seg, sizes, xs, ys, ids = util.segment_image(points, sigma=0.9, k=200, min_size=1000)
# plt.imshow(seg.astype(np.uint8) * 10, interpolation='nearest')
# plt.show()
imageio.imwrite(path + 'normal/' + str(I) + '.png', normalImg)
imageio.imwrite(path + 'plane/' + str(I) + '.png', seg.astype(np.uint8))
pointsArray = points[ys, xs]
starts = np.cumsum(sizes) - sizes
N = len(sizes)
if N == 0:
return
threads_per_block = 256
blocks = N
seed = (datetime.now() - datetime.utcfromtimestamp(0)).total_seconds() * 10000
Ws = np.zeros(shape=(N, threads_per_block, 4), dtype=np.float32)
percents = np.zeros(shape=(N, threads_per_block), dtype=np.float32)
pRANSAC.cpu_RANSAC(Ws, percents, pointsArray, sizes, starts)
p = np.argmax(percents, axis=1)
i = np.arange(p.shape[0])
W = Ws[i, p]
P = percents[i, p]
sizes = np.asanyarray(sizes)
ids = np.asanyarray(ids)
mask = (sizes > 1000) & (P > 0.70)
Pin = pRANSAC.cpu_removeOutliers(W[mask], P[mask], pointsArray, sizes[mask], starts[mask])
w = pRANSAC.fitBestPlane(Pin)
print("Wrting frame", I)
# np.save(path+'data/points'+str(I), pointsArray)
np.save(path + 'data/starts' + str(I), starts[mask])
np.save(path + 'data/sizes' + str(I), sizes[mask])
np.save(path + 'data/W' + str(I), w)
np.save(path + 'data/ids' + str(I), ids[mask])
# np.save(path+'data/P'+str(I), p)
# np.save(path+'data/Pall'+str(I), P)
np.save(path + 'data/Pin' + str(I), Pin)
def extractAllPlanes():
os.makedirs(path + 'normal', exist_ok=True)
os.makedirs(path + 'plane', exist_ok=True)
os.makedirs(path + 'data', exist_ok=True)
#rng_states = create_xoroshiro128p_states(threads_per_block * blocks, seed=seed)
#pRANSAC.my_RANSAC[N, threads_per_block](Ws, percents, pointsArray, sizes, starts, rng_states)
#normal = pcl.IntegralImageNormalEstimation(util.cloud)
T = np.loadtxt(path + 'pose/' + str(0) + '.txt')
t0 = T[0:3, 3]
p = Pool(8)
frames = range(200, 210, 10)
p.starmap(extractPlanes, list(zip(frames, [t0]*len(frames))))
#for I in range(0, 1735, 10):
# extractPlanes(I, t0)
return
#plt.imshow(seg, interpolation='nearest')
#plt.show()
#visual = pcl.pcl_visualization.CloudViewing()
# PointXYZ
#visual.ShowColorCloud(cloud, b'cloud')
#visual.ShowMonochromeCloud(cloud, b'cloud')
# visual.ShowColorCloud(ptcloud_centred, b'cloud')
# visual.ShowColorACloud(ptcloud_centred, b'cloud')
#v = True
#while v:
# v = not(visual.WasStopped())
#showPlanes(Ws[i, p, 0:3], Ws[i, p, 3])
#show_vtk.show_cloud(pointsArray)
#show_vtk.show_planes(Pin, W)
global counter
counter = 0
M = {}
Dic = {}
size = (320, 240)
Images = {}
Dataset = 0
DIR = '/media/mahdi/4418B81419D11C10/media/private/dataset/scannet/cop-test/'
def createPositiveMatch(n, m):
nn = str(Dataset) + '-' + str(n)
mm = str(Dataset) + '-' + str(m)
rgb_a = None #np.load(path + "matchD-10/" + str(n) + '.rgb.npy')
rgb_np = None #np.load(path + "matchD-10/" + str(m) + '.rgb.npy')
if nn not in Images:
rgb_a = cv2.resize(imageio.imread(path + 'color/' + str(n) + '.jpg'), dsize=size, interpolation=cv2.INTER_LINEAR)
nor = cv2.resize(imageio.imread(path + 'normal/' + str(n) + '.png'), dsize=size,
interpolation=cv2.INTER_LINEAR)
Images[nn] = nn
np.save(DIR + 'images/' + nn + '.rgb', rgb_a)
np.save(DIR + 'images/' + nn + '.n', nor)
else:
rgb_a = np.load(DIR + 'images/' + nn + '.rgb.npy')
if mm not in Images:
rgb_np = cv2.resize(imageio.imread(path + 'color/' + str(m) + '.jpg'), dsize=size,
interpolation=cv2.INTER_LINEAR)
nor = cv2.resize(imageio.imread(path + 'normal/' + str(m) + '.png'), dsize=size,
interpolation=cv2.INTER_LINEAR)
Images[mm] = mm
np.save(DIR + 'images/' + mm + '.rgb', rgb_np)
np.save(DIR + 'images/' + mm + '.n', nor)
else:
rgb_np = np.load(DIR + 'images/' + mm + '.rgb.npy')
W1 = np.load(path + 'data/W' + str(n) + '.npy')
Pin1 = np.load(path + 'data/Pin' + str(n) + '.npy', allow_pickle=True)
ids1 = np.load(path + 'data/ids' + str(n) + '.npy')
W2 = np.load(path + 'data/W' + str(m) + '.npy')
Pin2 = np.load(path + 'data/Pin' + str(m) + '.npy', allow_pickle=True)
ids2 = np.load(path + 'data/ids' + str(m) + '.npy')
mask1 = imageio.imread(path + 'plane/' + str(n) + '.png')[:, :, 0]
mask2 = imageio.imread(path + 'plane/' + str(m) + '.png')[:, :, 0]
l1 = min(10, len(W1))
l2 = min(20, len(W2))
w1 = W1[0:l1, :]
w2 = W2[0:l2, :]
D = np.zeros((len(w1), len(w2)), np.float32)
for i in range(len(w1)):
for j in range(len(w2)):
D[i, j] = 1000 * (np.linalg.norm(np.abs(Pin1[i].dot(w2[j, 0:3]) - w2[j, 3])) / len(Pin1[i]) +
np.linalg.norm(np.abs(Pin2[j].dot(w1[i, 0:3]) - w1[i, 3])) / len(Pin2[j]))
S = np.zeros((len(w1), min(len(w2), len(w1))), np.float32) # Similarity
for i in range(len(w1)):
for j in range(S.shape[1]):
S[i, j] = 1.0 / (np.linalg.norm(np.abs(Pin1[i].dot(w2[j, 0:3]) - w2[j, 3])) / len(Pin1[i]) +
np.linalg.norm(np.abs(Pin2[j].dot(w1[i, 0:3]) - w1[i, 3])) / len(Pin2[j]))
#D2[j, i] = np.linalg.norm(np.abs(Pin2[j].dot(w1[i, 0:3]) - w1[i, 3])) / len(Pin2[j])
r_macth, c_match = linear_sum_assignment(D)
good = D[r_macth, c_match] < 0.5
r_macth = r_macth[good]
c_match = c_match[good]
r_differ, c_differ = linear_sum_assignment(S)
#m1, d1 = np.argmin(D1, axis=1), 1000 * np.min(D1, axis=1)
#m2, d2 = np.argmin(D2, axis=1), 1000 * np.min(D2, axis=1)
#match2 = ((m1[m2] == np.arange(0, l2)) & (d2 < 0.5))
#match1 = (m2[m1] == np.arange(0, l1)) & (d1 < 0.5)
#match1 = np.array(list(zip(np.arange(0, len(m1))[match1], m1[match1])))
#match2 = np.array(list(zip(m2[match2], np.arange(0, len(m2))[match2])))
#match = np.unique(np.append(match1, match2).reshape(-1, 2).astype(np.int), axis=0)
#match = match[match[:,0] < 10]
global counter
print(counter, n, m)
if len(r_differ) == 0:
return
#differ, maxDis = np.argmax(D1, axis=1), 1000 * np.max(D1, axis=1)
# differ=np.arange(0, len(w2))
# differ[match1[:, 1]] = -1
# differ = differ[differ != -1]
# np.random.shuffle(differ)
# differ = np.append(differ, maxIndex)
for (r, c) in zip(r_macth, c_match):
m1 = ids1[r]
m2 = ids2[c]
s = ids2[np.argmin(S[r])]
if r in r_differ:
s = ids2[c_differ[np.where(r_differ == r)]][0]
K = (str(Dataset) + '-' + str(n) + '-' + str(m1),
str(Dataset) + '-' + str(m) + '-' + str(m2),
str(Dataset) + '-' + str(m) + '-' + str(s))
masks = [cv2.resize((mask1 == m1).astype(np.int8) * 255, dsize=size, interpolation=cv2.INTER_LINEAR),
cv2.resize((mask2 == m2).astype(np.int8) * 255, dsize=size, interpolation=cv2.INTER_LINEAR),
cv2.resize((mask2 == s).astype(np.int8) * 255, dsize=size, interpolation=cv2.INTER_LINEAR)]
for k in range(len(K)):
if K[k] not in M:
M[K[k]] = 1
np.save(DIR + 'planes/' + str(K[k]), masks[k])
Dic[counter] = (K, (nn, mm, mm))
a = (0.2 * np.stack((masks[0], np.zeros_like(masks[0]), np.zeros_like(masks[0])), axis=-1)).astype(np.uint8)
pos = (0.2 * np.stack((masks[1], np.zeros_like(masks[0]), np.zeros_like(masks[0])), axis=-1)).astype(np.uint8)
neg = (0.2 * np.stack((np.zeros_like(masks[0]), np.zeros_like(masks[0]), masks[2]), axis=-1)).astype(np.uint8)
# imageio.imwrite('{0}/match/{1}-{2}-{3}-a.jpg'.format(path, counter, m1, n), rgb_a + a)
# imageio.imwrite('{0}/match/{1}-{2}-{3}-p.jpg'.format(path, counter, m2, m), rgb_np + pos)
# imageio.imwrite('{0}/match/{1}-{2}-{3}-n.jpg'.format(path, counter, s, m), rgb_np + neg)
img = np.zeros((2 * rgb_a.shape[0], 2 * rgb_a.shape[1], rgb_a.shape[2]), np.uint8)
l = (np.int) (rgb_a.shape[0]/2)
img[l: 3 * l, 0:rgb_a.shape[1]] = rgb_a + a
img[0: rgb_a.shape[0] , rgb_a.shape[1]:] = rgb_np + pos
img[rgb_a.shape[0] : , rgb_a.shape[1]:] = rgb_np + neg
imageio.imwrite('{0}/visual/{1}-{2}-{3}-{4}.jpg'.format(DIR, counter, Dataset, n, m), img)
counter = counter + 1
if __name__ == "__main__":
#extractAllPlanes()
#exit(0)
# import cProfile
# cProfile.run('main()', sort='time')
np.set_printoptions(precision=3)
n = 0
m = 100
path = "/media/mahdi/4418B81419D11C10/media/private/dataset/scannet/" + str(0) + "/img/"
util = Util()
# counter = 0
# for d in [(0, 5575), (3, 1735), (5, 1446), (10, 1364)]:
# Dataset = d[0]
# path = "/media/mahdi/4418B81419D11C10/media/private/dataset/scannet/" + str(Dataset) + "/img/"
# for l in [250]:
# for i in range(40, d[1] - l, 80):
# createPositiveMatch(i, i + l)
# f = open(DIR+"/train.pkl", "wb")
# pickle.dump(Dic, f)
# exit(0)
W1 = np.load(path + 'data/W' + str(n)+'.npy')
Pin1 = np.load(path + 'data/Pin' + str(n)+'.npy', allow_pickle=True)
ids1 = np.load(path + 'data/ids' + str(n) + '.npy')
W2 = np.load(path + 'data/W' + str(m) + '.npy')
Pin2 = np.load(path + 'data/Pin' + str(m) + '.npy', allow_pickle=True)
ids2 = np.load(path + 'data/ids' + str(m) + '.npy')
T1 = np.loadtxt(path + 'pose/'+str(n)+'.txt')
T2 = np.loadtxt(path + 'pose/'+str(m)+'.txt')
R1 = T1[0:3, 0:3]
t1 = T1[0:3, 3]
R2 = T2[0:3, 0:3]
t2 = T2[0:3, 3] - t1
depth = imageio.imread(path + 'depth/' + str(n) + '.png')
mask1 = imageio.imread(path + 'plane/' + str(n) + '.png')[:,:,0]
color1 = cv2.resize(imageio.imread(path + 'color/' + str(n) + '.jpg'), dsize=(depth.shape[1], depth.shape[0]), interpolation=cv2.INTER_CUBIC)
points1 = util.point_cloud(depth , None).reshape((-1, 3))
depth = imageio.imread(path + 'depth/' + str(m) + '.png')
mask2 = imageio.imread(path + 'plane/' + str(m) + '.png')[:,:,0]
color2 = cv2.resize(imageio.imread(path + 'color/' + str(m) + '.jpg'), dsize=(depth.shape[1], depth.shape[0]),
interpolation=cv2.INTER_CUBIC)
points2 = util.point_cloud(depth , None).reshape((-1, 3))
l = 20
w1 = W1[0:l, :]
w2 = W2[0:l, :]
#for p in Pin1:
# show_vtk.show_planes([p], np.random.rand(3))
show_vtk.show_planes(Pin1, [0, 1, 0])
show_vtk.show_planes(Pin2, [1, 0, 0])
# show_vtk.show_cloud(Pin1[7], [0, 1, 0])
# show_vtk.show_cloud(Pin2[4], [1, 0, 0])
#show_vtk.show_cloud(points1.dot(R1.T) , [0, 1, 0])
#show_vtk.show_cloud(points2.dot(R2.T) + t2, [1, 0, 1])
show_vtk.showVTK()
#
#extractPlanes(0)
exit(0)