-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch.py
executable file
·376 lines (304 loc) · 13.8 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
"""Search (Chapters 3-4)
The way to use this code is to subclass Problem to create a class of problems,
then create problem instances and solve them with calls to the various search
functions."""
from __future__ import generators
from utils import *
import random
import sys
# Alumno: Alejandro Curbelo Fontelos
# ______________________________________________________________________________
class Problem:
"""The abstract class for a formal problem. You should subclass this and
implement the method successor, and possibly __init__, goal_test, and
path_cost. Then you will create instances of your subclass and solve them
with the various search functions."""
def __init__(self, initial, goal=None):
"""The constructor specifies the initial state, and possibly a goal
state, if there is a unique goal. Your subclass's constructor can add
other arguments."""
self.initial = initial
self.goal = goal
def successor(self, state):
"""Given a state, return a sequence of (action, state) pairs reachable
from this state. If there are many successors, consider an iterator
that yields the successors one at a time, rather than building them
all at once. Iterators will work fine within the framework."""
abstract
def goal_test(self, state):
"""Return True if the state is a goal. The default method compares the
state to self.goal, as specified in the constructor. Implement this
method if checking against a single self.goal is not enough."""
return state == self.goal
def path_cost(self, c, state1, action, state2):
"""Return the cost of a solution path that arrives at state2 from
state1 via action, assuming cost c to get up to state1. If the problem
is such that the path doesn't matter, this function will only look at
state2. If the path does matter, it will consider c and maybe state1
and action. The default method costs 1 for every step in the path."""
return c + 1
def value(self):
"""For optimization problems, each state has a value. Hill-climbing
and related algorithms try to maximize this value."""
abstract
# ______________________________________________________________________________
class Node:
"""A node in a search tree. Contains a pointer to the parent (the node
that this is a successor of) and to the actual state for this node. Note
that if a state is arrived at by two paths, then there are two nodes with
the same state. Also includes the action that got us to this state, and
the total path_cost (also known as g) to reach the node. Other functions
may add an f and h value; see best_first_graph_search and astar_search for
an explanation of how the f and h values are handled. You will not need to
subclass this class."""
def __init__(self, state, parent=None, action=None, path_cost=0):
"""Create a search tree Node, derived from a parent by an action."""
update(self, state=state, parent=parent, action=action,
path_cost=path_cost, depth=0)
if parent:
self.depth = parent.depth + 1
def __repr__(self):
return "<Node %s>" % (self.state,)
def path(self):
"""Create a list of nodes from the root to this node."""
x, result = self, [self]
while x.parent:
result.append(x.parent)
x = x.parent
return result
def expand(self, problem):
"""Return a list of nodes reachable from this node. [Fig. 3.8]"""
return [Node(next, self, act,
problem.path_cost(self.path_cost, self.state, act, next))
for (act, next) in problem.successor(self.state)]
# ______________________________________________________________________________
## Uninformed Search algorithms
def tree_search(problem, fringe):
"""Search through the successors of a problem to find a goal.
The argument fringe should be an empty queue.
Don't worry about repeFIFOQueueated paths to a state. [Fig. 3.8]"""
count=0
fringe.append(Node(problem.initial))
while fringe:
node = fringe.pop()
if problem.goal_test(node.state):
print "Nodos expandidos: ", count
print "Coste del recorrido: ", node.path_cost
return node
fringe.extend(node.expand(problem))
count+=1
print "Nodos expandidos: ", count
return None
def breadth_first_tree_search(problem):
"""Search the shallowest nodes in the search tree first. [p 74]"""
return tree_search(problem, FIFOQueue())
def depth_first_tree_search(problem):
"""Search the deepest nodes in the search tree first. [p 74]"""
return tree_search(problem, Stack())
def branch_bound_tree_search(problem):
return tree_search(problem, SortedList())
def branch_bound_heuris_tree_search(problem):
return tree_search(problem, SortedListH(problem))
def graph_search(problem, fringe):
"""Search through the successors of a problem to find a goal.
The argument fringe should be an empty queue.
If two paths reach a state, only use the best one. [Fig. 3.18]"""
count=0
closed = {}
fringe.append(Node(problem.initial))
while fringe:
node = fringe.pop()
if problem.goal_test(node.state):
print "Nodos expandidos: ", count
print "Coste del recorrido: ", node.path_cost
return node
if node.state not in closed:
closed[node.state] = True
fringe.extend(node.expand(problem))
count+=1
print "Nodos expandidos: ", count
return None
def breadth_first_graph_search(problem):
"""Search the shallowest nodes in the search tree first. [p 74]"""
return graph_search(problem, FIFOQueue()) # FIFOQueue -> fringe
def depth_first_graph_search(problem):
"""Search the deepest nodes in the search tree first. [p 74]"""
return graph_search(problem, Stack())
def depth_limited_search(problem, limit=50):
"""[Fig. 3.12]"""
def recursive_dls(node, problem, limit):
cutoff_occurred = False
if problem.goal_test(node.state):
return node
elif node.depth == limit:
return 'cutoff'
else:
for successor in node.expand(problem):
result = recursive_dls(successor, problem, limit)
if result == 'cutoff':
cutoff_occurred = True
elif result != None:
return result
if cutoff_occurred:
return 'cutoff'
else:
return None
# Body of depth_limited_search:
return recursive_dls(Node(problem.initial), problem, limit)
def iterative_deepening_search(problem):
"""[Fig. 3.13]"""
for depth in xrange(sys.maxint):
result = depth_limited_search(problem, depth)
if result is not 'cutoff':
return result
#______________________________________________________________________________
# Informed (Heuristic) Search
def best_first_graph_search(problem, f):
"""Search the nodes with the lowest f scores first.
You specify the function f(node) that you want to minimize; for example,
if f is a heuristic estimate to the goal, then we have greedy best
first search; if f is node.depth then we have depth-first search.
There is a subtlety: the line "f = memoize(f, 'f')" means that the f
values will be cached on the nodes as they are computed. So after doing
a best first search you can examine the f values of the path returned."""
f = memoize(f, 'f')
return graph_search(problem, PriorityQueue(min, f))
greedy_best_first_graph_search = best_first_graph_search
# Greedy best-first search is accomplished by specifying f(n) = h(n).
def astar_search(problem, h=None):
"""A* search is best-first graph search with f(n) = g(n)+h(n).
You need to specify the h function when you call astar_search.
Uses the pathmax trick: f(n) = max(f(n), g(n)+h(n)).
Implementar por parte del alumno.
"""
pass
# _____________________________________________________________________________
# The remainder of this file implements examples for the search algorithms.
# ______________________________________________________________________________
# Graphs and Graph Problems
class Graph:
"""A graph connects nodes (vertices) by edges (links). Each edge can also
have a length associated with it. The constructor call is something like:
g = Graph({'A': {'B': 1, 'C': 2})
this makes a graph with 3 nodes, A, B, and C, with an edge of length 1 from
A to B, and an edge of length 2 from A to C. You can also do:
g = Graph({'A': {'B': 1, 'C': 2}, directed=False)
This makes an undirected graph, so inverse links are also added. The graph
stays undirected; if you add more links with g.connect('B', 'C', 3), then
inverse link is also added. You can use g.nodes() to get a list of nodes,
g.get('A') to get a dict of links out of A, and g.get('A', 'B') to get the
length of the link from A to B. 'Lengths' can actually be any object at
all, and nodes can be any hashable object."""
def __init__(self, dict=None, directed=True):
self.dict = dict or {}
self.directed = directed
if not directed:
self.make_undirected()
def make_undirected(self):
"""Make a digraph into an undirected graph by adding symmetric edges."""
for a in self.dict.keys():
for (b, distance) in self.dict[a].items():
self.connect1(b, a, distance)
def connect(self, A, B, distance=1):
"""Add a link from A and B of given distance, and also add the inverse
link if the graph is undirected."""
self.connect1(A, B, distance)
if not self.directed: self.connect1(B, A, distance)
def connect1(self, A, B, distance):
"""Add a link from A to B of given distance, in one direction only."""
self.dict.setdefault(A, {})[B] = distance
def get(self, a, b=None):
"""Return a link distance or a dict of {node: distance} entries.
.get(a,b) returns the distance or None;
.get(a) returns a dict of {node: distance} entries, possibly {}."""
links = self.dict.setdefault(a, {})
if b is None:
return links
else:
return links.get(b)
def nodes(self):
"""Return a list of nodes in the graph."""
return self.dict.keys()
def UndirectedGraph(dict=None):
"""Build a Graph where every edge (including future ones) goes both ways."""
return Graph(dict=dict, directed=False)
def RandomGraph(nodes=range(10), min_links=2, width=400, height=300,
curvature=lambda: random.uniform(1.1, 1.5)):
"""Construct a random graph, with the specified nodes, and random links.
The nodes are laid out randomly on a (width x height) rectangle.
Then each node is connected to the min_links nearest neighbors.
Because inverse links are added, some nodes will have more connections.
The distance between nodes is the hypotenuse times curvature(),
where curvature() defaults to a random number between 1.1 and 1.5."""
g = UndirectedGraph()
g.locations = {}
## Build the cities
for node in nodes:
g.locations[node] = (random.randrange(width), random.randrange(height))
## Build roads from each city to at least min_links nearest neighbors.
for i in range(min_links):
for node in nodes:
if len(g.get(node)) < min_links:
here = g.locations[node]
def distance_to_node(n):
if n is node or g.get(node, n): return infinity
return distance(g.locations[n], here)
neighbor = argmin(nodes, distance_to_node)
d = distance(g.locations[neighbor], here) * curvature()
g.connect(node, neighbor, int(d))
return g
romania = UndirectedGraph(Dict(
A=Dict(Z=75, S=140, T=118),
B=Dict(U=85, P=101, G=90, F=211),
C=Dict(D=120, R=146, P=138),
D=Dict(M=75),
E=Dict(H=86),
F=Dict(S=99),
H=Dict(U=98),
I=Dict(V=92, N=87),
L=Dict(T=111, M=70),
O=Dict(Z=71, S=151),
P=Dict(R=97),
R=Dict(S=80),
U=Dict(V=142)))
romania.locations = Dict(
A=(91, 492), B=(400, 327), C=(253, 288), D=(165, 299),
E=(562, 293), F=(305, 449), G=(375, 270), H=(534, 350),
I=(473, 506), L=(165, 379), M=(168, 339), N=(406, 537),
O=(131, 571), P=(320, 368), R=(233, 410), S=(207, 457),
T=(94, 410), U=(456, 350), V=(509, 444), Z=(108, 531))
australia = UndirectedGraph(Dict(
T=Dict(),
SA=Dict(WA=1, NT=1, Q=1, NSW=1, V=1),
NT=Dict(WA=1, Q=1),
NSW=Dict(Q=1, V=1)))
australia.locations = Dict(WA=(120, 24), NT=(135, 20), SA=(135, 30),
Q=(145, 20), NSW=(145, 32), T=(145, 42), V=(145, 37))
class GPSProblem(Problem):
"""The problem of searching in a graph from one node to another."""
def __init__(self, initial, goal, graph):
Problem.__init__(self, initial, goal)
self.graph = graph
def successor(self, A):
"""Return a list of (action, result) pairs."""
return [(B, B) for B in self.graph.get(A).keys()]
def path_cost(self, cost_so_far, A, action, B):
return cost_so_far + (self.graph.get(A, B) or infinity)
def h(self, node):
"""h function is straight-line distance from a node's state to goal."""
locs = getattr(self.graph, 'locations', None)
if locs:
return int(distance(locs[node.state], locs[self.goal]))
else:
return infinity
"""
def hBad(self, node):
locs = getattr(self.graph, 'locations', None)
if locs:
res=0
for a,b in zip(locs[node.state],locs[self.goal]):
res+=abs(a-b)
return res
else:
return infinity
"""