-
Notifications
You must be signed in to change notification settings - Fork 14
/
generate.py
231 lines (196 loc) · 8.64 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import time
# import warnings
# warnings.filterwarnings("ignore")
from functools import partial
import multiprocessing as mp
import numpy as np
import torch
import torch.nn as nn
import hydra
from omegaconf import DictConfig, OmegaConf
from tqdm import tqdm
# from torch.utils.tensorboard import SummaryWriter # If tensorboard is preferred over wandb
from scipy.io.wavfile import write as wavwrite
# from scipy.io.wavfile import read as wavread
from models import construct_model
from utils import find_max_epoch, print_size, calc_diffusion_hyperparams, local_directory, smooth_ckpt
def sampling(net, size, diffusion_hyperparams, condition=None):
"""
Perform the complete sampling step according to p(x_0|x_T) = \prod_{t=1}^T p_{\theta}(x_{t-1}|x_t)
Parameters:
net (torch network): the model
size (tuple): size of tensor to be generated,
usually is (number of audios to generate, channels=1, length of audio)
diffusion_hyperparams (dict): dictionary of diffusion hyperparameters returned by calc_diffusion_hyperparams
note, the tensors need to be cuda tensors
Returns:
the generated audio(s) in torch.tensor, shape=size
"""
_dh = diffusion_hyperparams
T, Alpha, Alpha_bar, Sigma = _dh["T"], _dh["Alpha"], _dh["Alpha_bar"], _dh["Sigma"]
assert len(Alpha) == T
assert len(Alpha_bar) == T
assert len(Sigma) == T
assert len(size) == 3
print('begin sampling, total number of reverse steps = %s' % T)
x = torch.normal(0, 1, size=size).cuda()
with torch.no_grad():
for t in tqdm(range(T-1, -1, -1)):
diffusion_steps = (t * torch.ones((size[0], 1))).cuda() # use the corresponding reverse step
epsilon_theta = net((x, diffusion_steps,), mel_spec=condition) # predict \epsilon according to \epsilon_\theta
x = (x - (1-Alpha[t])/torch.sqrt(1-Alpha_bar[t]) * epsilon_theta) / torch.sqrt(Alpha[t]) # update x_{t-1} to \mu_\theta(x_t)
if t > 0:
x = x + Sigma[t] * torch.normal(0, 1, size=size).cuda() # add the variance term to x_{t-1}
return x
@torch.no_grad()
def generate(
rank,
diffusion_cfg,
model_cfg,
dataset_cfg,
ckpt_iter="max",
n_samples=1, # Samples per GPU
name=None,
batch_size=None,
ckpt_smooth=None,
mel_path=None, mel_name=None,
dataloader=None,
):
"""
Generate audio based on ground truth mel spectrogram
Parameters:
output_directory (str): checkpoint path
n_samples (int): number of samples to generate, default is 4
ckpt_iter (int or 'max'): the pretrained checkpoint to be loaded;
automatically selects the maximum iteration if 'max' is selected
mel_path, mel_name (str): condition on spectrogram "{mel_path}/{mel_name}.wav.pt"
# dataloader: condition on spectrograms provided by dataloader
"""
if rank is not None:
print(f"rank {rank} {torch.cuda.device_count()} GPUs")
torch.cuda.set_device(rank % torch.cuda.device_count())
local_path, output_directory = local_directory(name, model_cfg, diffusion_cfg, dataset_cfg, 'waveforms')
# map diffusion hyperparameters to gpu
diffusion_hyperparams = calc_diffusion_hyperparams(**diffusion_cfg, fast=True) # dictionary of all diffusion hyperparameters
# predefine model
net = construct_model(model_cfg).cuda()
print_size(net)
net.eval()
# load checkpoint
print('ckpt_iter', ckpt_iter)
ckpt_path = os.path.join('exp', local_path, 'checkpoint')
if ckpt_iter == 'max':
ckpt_iter = find_max_epoch(ckpt_path)
ckpt_iter = int(ckpt_iter)
if ckpt_smooth is None:
try:
model_path = os.path.join(ckpt_path, '{}.pkl'.format(ckpt_iter))
checkpoint = torch.load(model_path, map_location='cpu')
net.load_state_dict(checkpoint['model_state_dict'])
print('Successfully loaded model at iteration {}'.format(ckpt_iter))
except:
raise Exception('No valid model found')
else:
state_dict = smooth_ckpt(ckpt_path, ckpt_smooth, ckpt_iter, alpha=None)
net.load_state_dict(state_dict)
# Add checkpoint number to output directory
output_directory = os.path.join(output_directory, str(ckpt_iter))
if rank == 0:
os.makedirs(output_directory, mode=0o775, exist_ok=True)
print("saving to output directory", output_directory)
if batch_size is None:
batch_size = n_samples
assert n_samples % batch_size == 0
# if mel_path is not None and mel_name is not None:
# # use ground truth mel spec
# try:
# ground_truth_mel_name = os.path.join(mel_path, '{}.wav.pt'.format(mel_name))
# ground_truth_mel_spectrogram = torch.load(ground_truth_mel_name).unsqueeze(0).cuda()
# except:
# raise Exception('No ground truth mel spectrogram found')
# audio_length = ground_truth_mel_spectrogram.shape[-1] * dataset_cfg["hop_length"]
if mel_name is not None:
if mel_path is not None: # pre-generated spectrogram
# use ground truth mel spec
try:
ground_truth_mel_name = os.path.join(mel_path, '{}.wav.pt'.format(mel_name))
ground_truth_mel_spectrogram = torch.load(ground_truth_mel_name).unsqueeze(0).cuda()
except:
raise Exception('No ground truth mel spectrogram found')
else:
import dataloaders.mel2samp as mel2samp
dataset_name = dataset_cfg.pop("_name_")
_mel = mel2samp.Mel2Samp(**dataset_cfg)
dataset_cfg["_name_"] = dataset_name # Restore
filepath = f"{dataset_cfg.data_path}/{mel_name}.wav"
audio, sr = mel2samp.load_wav_to_torch(filepath)
melspectrogram = _mel.get_mel(audio)
# filename = os.path.basename(filepath)
# new_filepath = cfg.output_dir + '/' + filename + '.pt'
# print(new_filepath)
# torch.save(melspectrogram, new_filepath)
ground_truth_mel_spectrogram = melspectrogram.unsqueeze(0).cuda()
audio_length = ground_truth_mel_spectrogram.shape[-1] * dataset_cfg["hop_length"]
else:
# predefine audio shape
audio_length = dataset_cfg["segment_length"] # 16000
ground_truth_mel_spectrogram = None
print(f'begin generating audio of length {audio_length} | {n_samples} samples with batch size {batch_size}')
# inference
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
generated_audio = []
for _ in range(n_samples // batch_size):
_audio = sampling(
net,
(batch_size,1,audio_length),
diffusion_hyperparams,
condition=ground_truth_mel_spectrogram,
)
generated_audio.append(_audio)
generated_audio = torch.cat(generated_audio, dim=0)
end.record()
torch.cuda.synchronize()
print('generated {} samples shape {} at iteration {} in {} seconds'.format(n_samples,
generated_audio.shape,
ckpt_iter,
int(start.elapsed_time(end)/1000)))
# save audio to .wav
for i in range(n_samples):
outfile = '{}k_{}.wav'.format(ckpt_iter // 1000, n_samples*rank + i)
wavwrite(os.path.join(output_directory, outfile),
dataset_cfg["sampling_rate"],
generated_audio[i].squeeze().cpu().numpy())
# save audio to tensorboard
# tb = SummaryWriter(os.path.join('exp', local_path, tensorboard_directory))
# tb.add_audio(tag=outfile, snd_tensor=generated_audio[i], sample_rate=dataset_cfg["sampling_rate"])
# tb.close()
print('saved generated samples at iteration %s' % ckpt_iter)
return generated_audio
@hydra.main(version_base=None, config_path="configs/", config_name="config")
def main(cfg: DictConfig) -> None:
print(OmegaConf.to_yaml(cfg))
OmegaConf.set_struct(cfg, False) # Allow writing keys
num_gpus = torch.cuda.device_count()
generate_fn = partial(
generate,
diffusion_cfg=cfg.diffusion,
model_cfg=cfg.model,
dataset_cfg=cfg.dataset,
**cfg.generate,
)
if num_gpus <= 1:
generate_fn(0)
else:
mp.set_start_method("spawn")
processes = []
for i in range(num_gpus):
p = mp.Process(target=generate_fn, args=(i,))
p.start()
processes.append(p)
for p in processes:
p.join()
if __name__ == "__main__":
main()