-
-
Notifications
You must be signed in to change notification settings - Fork 142
/
create_face.py
72 lines (59 loc) · 1.96 KB
/
create_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import cv2
import numpy as numpy
import os, time
import dlib
from imutils import face_utils
from imutils.face_utils import FaceAligner
detector = dlib.get_frontal_face_detector()
shape_predictor = dlib.shape_predictor("models/shape_predictor_68_face_landmarks.dat")
face_aligner = FaceAligner(shape_predictor, desiredFaceWidth=200)
FACE_DIR = "incept/"
def create_folder(folder_name):
if not os.path.exists(folder_name):
os.mkdir(folder_name)
def main():
create_folder(FACE_DIR)
while True:
name=input("EnterName: ")
face_id = input("Enter id for face: ")
try:
face_id = int(face_id)
face_folder = FACE_DIR + str(face_id) + "/"
create_folder(face_folder)
break
except:
print("Invalid input. id must be int")
continue
# get beginning image number
while True:
init_img_no = input("Starting img no.: ")
try:
init_img_no = int(init_img_no)
break
except:
print("Starting img no should be integer...")
continue
img_no = init_img_no
cap = cv2.VideoCapture(0)
total_imgs = 10
while True:
ret, img = cap.read()
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = detector(img_gray)
if len(faces) == 1:
face = faces[0]
(x, y, w, h) = face_utils.rect_to_bb(face)
face_img = img_gray[y-50:y + h+100, x-50:x + w+100]
face_aligned = face_aligner.align(img, img_gray, face)
face_img = face_aligned
img_path = face_folder +name+ str(img_no) + ".jpg"
cv2.imwrite(img_path, face_img)
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 0), 3)
cv2.imshow("aligned", face_img)
img_no += 1
cv2.imshow("Saving", img)
cv2.waitKey(1)
if img_no == init_img_no + total_imgs:
break
cap.release()
main()