-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
84 lines (71 loc) · 3.16 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# -*- coding: utf-8 -*-
"""
Created on Fri Feb 3 14:55:35 2023
@author: Chovatiya
"""
import os
import sys
import inspect
import yaml
config_file = open('config.yaml','r')
config = yaml.load(config_file, Loader = yaml.FullLoader)
currentdir = os.path.dirname(os.path.abspath(
inspect.getfile(inspect.currentframe())))
maindir = os.path.dirname(currentdir)
sys.path.insert(0, maindir)
subdir = os.path.dirname(maindir)
sys.path.insert(0, subdir)
subsubdir = os.path.dirname(subdir)
sys.path.insert(0, subsubdir)
#%% import libraries
import pickle
from lib.datasets import LoadDatasets
from lib.dataloader import ModelDataLoader
import torch
from datetime import date
from lib.utilities import collate_fn
from optunatrainer import optuna_optimizer
#%% Standalone Run
if __name__ == "__main__":
read_pickle = open(os.path.join(maindir, config['path']['labels_path']), 'rb')
all_classes = pickle.load(read_pickle)
time_stamp = date.today().strftime('%d-%m-20%y')
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
DATA_DIR = os.path.join(maindir, config['path']['dataset_path'])
OUT_DIR = os.path.join(maindir, config['path']['result_path'], time_stamp)
# os.makedirs(OUT_DIR, exist_ok=True)
if not os.path.exists(OUT_DIR):
os.makedirs(OUT_DIR)
batch_size = config['dl']['batch_size']
shuffle = config['dl']['shuffle']
num_workers = config['dl']['num_workers']
VISUALIZE_TRANSFORMED_IMAGES = config['dl']['visualize_img']
MAP_PER_CLASS = config['dl']['MAP_PER_CLASS']
train_data = LoadDatasets(DATA_DIR, all_classes, 'training')
val_data = LoadDatasets(DATA_DIR, all_classes, 'validation')
test_data = LoadDatasets(DATA_DIR, all_classes, 'testing')
training_dataloader = ModelDataLoader(train_data, batch_size=batch_size,
shuffle = shuffle,
num_workers = num_workers,
collate_fn = collate_fn)
validation_dataloader = ModelDataLoader(val_data, batch_size=batch_size,
shuffle = shuffle,
num_workers = num_workers,
collate_fn = collate_fn)
testing_dataloader = ModelDataLoader(test_data, batch_size=batch_size,
shuffle = shuffle,
num_workers = num_workers,
collate_fn = collate_fn)
n_trials = config['optuna']['trials']
if not config['optuna']['saved_study']:
save_study = None
else:
save_study = os.path.join(maindir, config['path']['result_path'],
config['optuna']['time-stamp'],
'optuna_study.pkl')
opt_optim = optuna_optimizer(OUT_DIR, all_classes, training_dataloader,
testing_dataloader, validation_dataloader,
train_data, test_data, val_data, n_trials,
save_study)
opt_optim.optuna_study()
opt_optim.create_summary()