-
Notifications
You must be signed in to change notification settings - Fork 62
/
models.py
398 lines (346 loc) · 15.6 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import logging
import tensorflow as tf
from ops import (collapse_dims, conv2d, resize_conv2d, conv3d, convgru,
deconv2d, deconv3d, proj_slice, proj_splat, repeat_tensor,
separable_conv2d, tf_static_shape, uncollapse_dims)
#####################################
##### Image processing networks #####
#####################################
def im_unet(net, ims):
net.im_net = {}
bs, h, w, ch = ims.get_shape().as_list()
with tf.variable_scope('ImNet_UNet'):
conv1 = conv2d(
'conv1', ims, 5, 32, act=None, norm=net.norm, mode=net.mode)
net.im_net['conv1'] = conv1
conv2 = conv2d('conv2', conv1, 3, 64, norm=net.norm, mode=net.mode)
net.im_net['conv2'] = conv2
conv3 = conv2d('conv3', conv2, 3, 128, norm=net.norm, mode=net.mode)
net.im_net['conv3'] = conv3
conv4 = conv2d('conv4', conv3, 3, 256, norm=net.norm, mode=net.mode)
net.im_net['conv4'] = conv4
_, fh, fw, ch = conv4.get_shape().as_list()
deconv1 = deconv2d(
'deconv1', conv4, 3, 128, norm=net.norm, mode=net.mode)
net.im_net['deconv1'] = deconv1
deconv1 = tf.concat([deconv1, conv3], axis=3)
deconv2 = deconv2d(
'deconv2', deconv1, 3, 64, norm=net.norm, mode=net.mode)
net.im_net['deconv2'] = deconv2
deconv2 = tf.concat([deconv2, conv2], axis=3)
deconv3 = deconv2d(
'deconv3', deconv2, 3, 32, norm=net.norm, mode=net.mode)
net.im_net['deconv3'] = deconv3
deconv3 = tf.concat([deconv3, conv1], axis=3)
im_feats = deconv2d(
'deconv4', deconv3, 5, 32, stride=1, norm=None, mode=net.mode)
net.im_net['out'] = im_feats
return im_feats
im_nets = {'unet': im_unet}
######################################
###### Grid processing networks ######
######################################
def grid_unet32(net, cost_vol):
n, h, w, d, ch = cost_vol.get_shape().as_list()
net.grid_net = {}
with tf.variable_scope('Grid_Unet'):
conv1 = conv3d(
'conv1',
cost_vol,
4,
32,
activation=None,
norm=net.norm,
mode=net.mode)
net.grid_net['conv1'] = conv1
conv2 = conv3d('conv2', conv1, 4, 64, norm=net.norm, mode=net.mode)
net.grid_net['conv2'] = conv2
conv3 = conv3d('conv3', conv2, 4, 128, norm=net.norm, mode=net.mode)
net.grid_net['conv3'] = conv3
deconv1 = deconv3d(
'deconv1', conv3, 4, 64, norm=net.norm, mode=net.mode)
net.grid_net['deconv1'] = deconv1
deconv1 = tf.concat([deconv1, conv2], axis=4)
deconv2 = deconv3d(
'deconv2', deconv1, 4, 32, norm=net.norm, mode=net.mode)
net.grid_net['deconv2'] = deconv2
deconv2 = tf.concat([deconv2, conv1], axis=4)
deconv3 = deconv3d(
'deconv3', deconv2, 4, 32, norm=net.norm, mode=net.mode)
net.grid_net['deconv3'] = deconv3
final_vol = deconv3d(
'out', deconv3, 4, 1, stride=1, norm=None, mode=net.mode)
net.grid_net['out'] = final_vol
return final_vol
def grid_unet64(net, cost_vol):
n, h, w, d, ch = cost_vol.get_shape().as_list()
net.grid_net = {}
with tf.variable_scope('Grid_Unet'):
conv1 = conv3d(
'conv1',
cost_vol,
4,
32,
activation=None,
norm=net.norm,
mode=net.mode)
net.grid_net['conv1'] = conv1
conv2 = conv3d('conv2', conv1, 4, 64, norm=net.norm, mode=net.mode)
net.grid_net['conv2'] = conv2
conv3 = conv3d('conv3', conv2, 4, 128, norm=net.norm, mode=net.mode)
net.grid_net['conv3'] = conv3
conv4 = conv3d('conv4', conv3, 4, 256, norm=net.norm, mode=net.mode)
net.grid_net['conv4'] = conv4
deconv1 = deconv3d(
'deconv1', conv4, 4, 128, norm=net.norm, mode=net.mode)
net.grid_net['deconv1'] = deconv1
deconv1 = tf.concat([deconv1, conv3], axis=4)
deconv2 = deconv3d(
'deconv2', deconv1, 4, 64, norm=net.norm, mode=net.mode)
net.grid_net['deconv2'] = deconv2
deconv2 = tf.concat([deconv2, conv2], axis=4)
deconv3 = deconv3d(
'deconv3', deconv2, 4, 32, norm=net.norm, mode=net.mode)
net.grid_net['deconv3'] = deconv3
deconv3 = tf.concat([deconv3, conv1], axis=4)
deconv4 = deconv3d(
'deconv4', deconv3, 4, 32, norm=net.norm, mode=net.mode)
net.grid_net['deconv4'] = deconv4
final_vol = deconv3d(
'out', deconv4, 4, 1, stride=1, norm=None, mode=net.mode)
net.grid_net['out'] = final_vol
return final_vol
grid_nets = {'unet32': grid_unet32, 'unet64': grid_unet64}
###################################
###### LSM graph definitions ######
###################################
def model_vlsm(net, im_net=im_unet, grid_net=grid_unet32, rnn=convgru):
''' Voxel LSTM model '''
with tf.variable_scope('MVNet'):
# Setup placeholders for image, extrinsics and intrinsics
net.ims = tf.placeholder(tf.float32, net.im_tensor_shape, name='ims')
net.K = tf.placeholder(tf.float32, net.K_tensor_shape, name='K')
net.Rcam = tf.placeholder(tf.float32, net.R_tensor_shape, name='R')
# Compute image features
net.im_feats = im_net(net, collapse_dims(net.ims))
# Unproject feature grid
net.cost_grid = proj_splat(net, net.im_feats, net.K, net.Rcam)
# Combine grids with LSTM/GRU
net.pool_grid, _ = rnn(net.cost_grid)
# 3D grid reasoning
net.pool_grid = collapse_dims(net.pool_grid)
net.pred_vox = grid_net(net, net.pool_grid)
net.pred_vox = uncollapse_dims(net.pred_vox, net.batch_size,
net.im_batch)
net.prob_vox = tf.nn.sigmoid(net.pred_vox)
return net
def model_dlsm(net,
im_net=im_unet,
grid_net=grid_unet32,
rnn=convgru,
ray_samples=64,
proj_x=4,
sepup=False,
im_skip=True,
proj_last=False):
'''Depth LSTM model '''
with tf.variable_scope('MVNet'):
# Setup placeholders for im, depth, extrinsic and intrinsic matrices
net.ims = tf.placeholder(tf.float32, net.im_tensor_shape, name='ims')
net.K = tf.placeholder(tf.float32, net.K_tensor_shape, name='K')
net.Rcam = tf.placeholder(tf.float32, net.R_tensor_shape, name='R')
# Compute image features
net.im_feats = im_net(net, collapse_dims(net.ims))
# Unproject feature grid
net.cost_grid = proj_splat(net, net.im_feats, net.K, net.Rcam)
# Combine grids with LSTM/GRU
net.pool_grid, _ = rnn(net.cost_grid)
# Grid network
net.pool_grid = collapse_dims(net.pool_grid)
net.pred_vox = grid_net(net, net.pool_grid)
net.proj_vox = uncollapse_dims(net.grid_net['deconv3'], net.batch_size,
net.im_batch)
# Projection
proj_vox_in = (net.proj_vox
if not proj_last else net.proj_vox[:, -1:, ...])
net.ray_slices, z_samples = proj_slice(
net,
proj_vox_in,
net.K,
net.Rcam,
proj_size=net.im_h / proj_x,
samples=ray_samples)
bs, im_bs, ks, im_sz1, im_sz2, fdim, _ = tf_static_shape(
net.ray_slices)
net.depth_in = tf.reshape(net.ray_slices, [
bs * im_bs * ks, im_sz1, im_sz2, fdim * ray_samples
])
# Depth network
if proj_x == 4:
if not sepup:
net.depth_out = depth_net_x4(net, net.depth_in, im_skip)
else:
net.depth_out = depth_net_x4_sepup(net, net.depth_in, im_skip)
elif proj_x == 8:
if not sepup:
net.depth_out = depth_net_x8(net, net.depth_in, im_skip)
else:
net.depth_out = depth_net_x8_sepup(net, net.depth_in, im_skip)
else:
logger = logging.getLogger('mview3d.' + __name__)
logger.error(
'Unsupported subsample ratio for projection. Use {4, 8}')
net.depth_out = tf.reshape(net.depth_out,
[bs, im_bs, ks, net.im_h, net.im_w, 1])
return net
##################################################
###### Depth prediction network definitions ######
##################################################
def depth_net_x4_sepup(net, in_, im_skip):
def _skip_unet(d_f, im_f):
''' im_f: bs x im_bs x ... ; d_f: bs x t x im_bs ...'''
with tf.variable_scope('Skip'):
d_shape = tf_static_shape(d_f)
im_shape = tf_static_shape(im_f)
im_f = uncollapse_dims(im_f, net.batch_size, net.im_batch)
im_rep = repeat_tensor(im_f, d_shape[0] / im_shape[0], rep_dim=1)
im_rep = tf.reshape(im_rep, d_shape[:-1] + [im_shape[-1]])
return tf.concat([im_rep, d_f], axis=-1)
net.depth_net = {}
with tf.variable_scope('DepthNet'):
conv1 = separable_conv2d(
'conv1', in_, 3, 1, 512, stride=1, norm=net.norm, mode=net.mode)
net.depth_net['conv1'] = conv1 # 56x56
conv2 = separable_conv2d(
'conv2', conv1, 3, 1, 64, stride=1, norm=net.norm, mode=net.mode)
net.depth_net['conv2'] = conv2 # 56x56
conv2 = (_skip_unet(conv2, net.im_net['conv2']) if im_skip else conv2)
deconv1 = resize_conv2d(
'upconv1', conv2, 3, 32, norm=net.norm, mode=net.mode) # 112 x 112
net.depth_net['deconv1'] = deconv1
deconv1 = (_skip_unet(deconv1, net.im_net['conv1'])
if im_skip else deconv1)
deconv2 = resize_conv2d(
'upconv2', deconv1, 3, 32, norm=net.norm,
mode=net.mode) # 224 x 224
net.depth_net['deconv2'] = deconv2
deconv3 = conv2d(
'upconv3', deconv2, 3, 1, stride=1, norm=None,
mode=net.mode) # 224 x 224
net.depth_net['deconv3'] = deconv3
return net.depth_net['deconv3']
def depth_net_x8_sepup(net, in_, im_skip):
def _skip_unet(d_f, im_f):
''' im_f: bs x im_bs x ... ; d_f: bs x t x im_bs ...'''
with tf.variable_scope('Skip'):
d_shape = tf_static_shape(d_f)
im_shape = tf_static_shape(im_f)
im_f = uncollapse_dims(im_f, net.batch_size, net.im_batch)
im_rep = repeat_tensor(im_f, d_shape[0] / im_shape[0], rep_dim=1)
im_rep = tf.reshape(im_rep, d_shape[:-1] + [im_shape[-1]])
return tf.concat([im_rep, d_f], axis=-1)
net.depth_net = {}
with tf.variable_scope('DepthNet'):
conv1 = separable_conv2d(
'conv1', in_, 3, 1, 512, stride=1, norm=net.norm, mode=net.mode)
net.depth_net['conv1'] = conv1 # 28x28
conv2 = separable_conv2d(
'conv2', conv1, 3, 1, 128, stride=1, norm=net.norm, mode=net.mode)
net.depth_net['conv2'] = conv2 # 28x28
conv2 = (_skip_unet(conv2, net.im_net['conv3']) if im_skip else conv2)
deconv1 = resize_conv2d(
'upconv1', conv2, 3, 64, norm=net.norm, mode=net.mode) # 56x56
net.depth_net['deconv1'] = deconv1
deconv1 = (_skip_unet(deconv1, net.im_net['conv2'])
if im_skip else deconv1)
deconv2 = resize_conv2d(
'upconv2', deconv1, 3, 32, norm=net.norm, mode=net.mode) # 112x112
net.depth_net['deconv2'] = deconv2
deconv2 = (_skip_unet(deconv2, net.im_net['conv1'])
if im_skip else deconv2)
deconv3 = resize_conv2d(
'upconv3', deconv2, 3, 32, norm=net.norm, mode=net.mode) # 224x224
net.depth_net['deconv3'] = deconv3
deconv4 = conv2d(
'upconv4', deconv3, 3, 1, stride=1, norm=None,
mode=net.mode) # 224x224
net.depth_net['deconv4'] = deconv4
return net.depth_net['deconv4']
def depth_net_x4(net, in_, im_skip):
def _skip_unet(d_f, im_f):
''' im_f: bs x im_bs x ... ; d_f: bs x t x im_bs ...'''
with tf.variable_scope('Skip'):
d_shape = tf_static_shape(d_f)
im_shape = tf_static_shape(im_f)
im_f = uncollapse_dims(im_f, net.batch_size, net.im_batch)
im_rep = repeat_tensor(im_f, d_shape[0] / im_shape[0], rep_dim=1)
im_rep = tf.reshape(im_rep, d_shape[:-1] + [im_shape[-1]])
return tf.concat([im_rep, d_f], axis=-1)
net.depth_net = {}
with tf.variable_scope('DepthNet'):
conv1 = conv2d(
'conv1', in_, 1, 512, stride=1, norm=net.norm, mode=net.mode)
net.depth_net['conv1'] = conv1 # 56x56
conv2 = conv2d(
'conv2', conv1, 1, 128, stride=1, norm=net.norm, mode=net.mode)
net.depth_net['conv2'] = conv2 # 56x56
conv3 = conv2d(
'conv3', conv2, 3, 64, stride=1, norm=net.norm, mode=net.mode)
net.depth_net['conv3'] = conv3 # 56x56
conv3 = (_skip_unet(conv3, net.im_net['conv2']) if im_skip else conv3)
deconv1 = deconv2d(
'deconv1', conv3, 3, 32, norm=net.norm, mode=net.mode) # 112 x 112
net.depth_net['deconv1'] = deconv1
deconv1 = (_skip_unet(deconv1, net.im_net['conv1'])
if im_skip else deconv1)
deconv2 = deconv2d(
'deconv2', deconv1, 3, 32, norm=net.norm,
mode=net.mode) # 224 x 224
net.depth_net['deconv2'] = deconv2
deconv3 = conv2d(
'deconv3', deconv2, 3, 1, stride=1, norm=None,
mode=net.mode) # 224 x 224
net.depth_net['deconv3'] = deconv3
return net.depth_net['deconv3']
def depth_net_x8(net, in_, im_skip):
def _skip_unet(d_f, im_f):
''' im_f: bs x im_bs x ... ; d_f: bs x t x im_bs ...'''
with tf.variable_scope('Skip'):
d_shape = tf_static_shape(d_f)
im_shape = tf_static_shape(im_f)
im_f = uncollapse_dims(im_f, net.batch_size, net.im_batch)
im_rep = repeat_tensor(im_f, d_shape[0] / im_shape[0], rep_dim=1)
im_rep = tf.reshape(im_rep, d_shape[:-1] + [im_shape[-1]])
return tf.concat([im_rep, d_f], axis=-1)
net.depth_net = {}
with tf.variable_scope('DepthNet'):
conv1 = conv2d(
'conv1', in_, 1, 512, stride=1, norm=net.norm, mode=net.mode)
net.depth_net['conv1'] = conv1 # 28x28
conv2 = conv2d(
'conv2', conv1, 1, 128, stride=1, norm=net.norm, mode=net.mode)
net.depth_net['conv2'] = conv2 # 28x28
conv3 = conv2d(
'conv3', conv2, 3, 128, stride=1, norm=net.norm, mode=net.mode)
net.depth_net['conv3'] = conv3 # 28x28
conv3 = (_skip_unet(conv3, net.im_net['conv3']) if im_skip else conv3)
deconv1 = deconv2d(
'deconv1', conv3, 3, 64, norm=net.norm, mode=net.mode) # 56x56
net.depth_net['deconv1'] = deconv1
deconv1 = (_skip_unet(deconv1, net.im_net['conv2'])
if im_skip else deconv1)
deconv2 = deconv2d(
'deconv2', deconv1, 3, 32, norm=net.norm,
mode=net.mode) # 112 x 112
net.depth_net['deconv2'] = deconv2
deconv2 = (_skip_unet(deconv2, net.im_net['conv1'])
if im_skip else deconv2)
deconv3 = deconv2d(
'deconv3', deconv2, 3, 32, norm=net.norm,
mode=net.mode) # 224 x 224
net.depth_net['deconv3'] = deconv3
deconv4 = conv2d(
'deconv4', deconv3, 3, 1, stride=1, norm=None,
mode=net.mode) # 224 x 224
net.depth_net['deconv4'] = deconv4
return net.depth_net['deconv4']