-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathdemo_video.py
246 lines (205 loc) · 7.29 KB
/
demo_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
"""
Runs hmmr on a video.
Extracts tracks using AlphaPose/PoseFlow
Sample Usage:
python -m demo_video --out_dir demo_data/output
python -m demo_video --out_dir demo_data/output270k --load_path models/hmmr_model.ckpt-2699068
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from glob import glob
import json
import os.path as osp
import pickle
import re
from absl import flags
import ipdb
import numpy as np
from extract_tracks import compute_tracks
from src.config import get_config
from src.evaluation.run_video import (
process_image,
render_preds,
)
from src.evaluation.tester import Tester
from src.util.common import mkdir
from src.util.smooth_bbox import get_smooth_bbox_params
flags.DEFINE_string(
'vid_path', 'penn_action-2278.mp4',
'video to run on')
flags.DEFINE_integer(
'track_id', 0,
'PoseFlow generates a track for each detected person. This determines which'
' track index to use if using vid_path.'
)
flags.DEFINE_string('vid_dir', None, 'If set, runs on all video in directory.')
flags.DEFINE_string('out_dir', 'demo_output/',
'Where to save final HMMR results.')
flags.DEFINE_string('track_dir', 'demo_output/',
'Where to save intermediate tracking results.')
flags.DEFINE_string('pred_mode', 'pred',
'Which prediction track to use (Only pred supported now).')
flags.DEFINE_string('mesh_color', 'blue', 'Color of mesh.')
flags.DEFINE_integer(
'sequence_length', 20,
'Length of sequence during prediction. Larger will be faster for longer '
'videos but use more memory.'
)
flags.DEFINE_boolean(
'trim', False,
'If True, trims the first and last couple of frames for which the temporal'
'encoder doesn\'t see full fov.'
)
def get_labels_poseflow(json_path, num_frames, min_kp_count=20):
"""
Returns the poses for each person tracklet.
Each pose has dimension num_kp x 3 (x,y,vis) if the person is visible in the
current frame. Otherwise, the pose will be None.
Args:
json_path (str): Path to the json output from AlphaPose/PoseTrack.
num_frames (int): Number of frames.
min_kp_count (int): Minimum threshold length for a tracklet.
Returns:
List of length num_people. Each element in the list is another list of
length num_frames containing the poses for each person.
"""
with open(json_path, 'r') as f:
data = json.load(f)
if len(data.keys()) != num_frames:
print('Not all frames have people detected in it.')
frame_ids = [int(re.findall(r'\d+', img_name)[0])
for img_name in sorted(data.keys())]
if frame_ids[0] != 0:
print('PoseFlow did not find people in the first frame. '
'Needs testing.')
ipdb.set_trace()
all_kps_dict = {}
all_kps_count = {}
for i, key in enumerate(sorted(data.keys())):
# People who are visible in this frame.
track_ids = []
for person in data[key]:
kps = np.array(person['keypoints']).reshape(-1, 3)
idx = int(person['idx'])
if idx not in all_kps_dict.keys():
# If this is the first time, fill up until now with None
all_kps_dict[idx] = [None] * i
all_kps_count[idx] = 0
# Save these kps.
all_kps_dict[idx].append(kps)
track_ids.append(idx)
all_kps_count[idx] += 1
# If any person seen in the past is missing in this frame, add None.
for idx in set(all_kps_dict.keys()).difference(track_ids):
all_kps_dict[idx].append(None)
all_kps_list = []
all_counts_list = []
for k in all_kps_dict:
if all_kps_count[k] >= min_kp_count:
all_kps_list.append(all_kps_dict[k])
all_counts_list.append(all_kps_count[k])
# Sort it by the length so longest is first:
sort_idx = np.argsort(all_counts_list)[::-1]
all_kps_list_sorted = []
for sort_id in sort_idx:
all_kps_list_sorted.append(all_kps_list[sort_id])
return all_kps_list_sorted
def predict_on_tracks(model, img_dir, poseflow_path, output_path, track_id,
trim_length):
# Get all the images
im_paths = sorted(glob(osp.join(img_dir, '*.png')))
all_kps = get_labels_poseflow(poseflow_path, len(im_paths))
# Here we set which track to use.
track_id = min(track_id, len(all_kps) - 1)
print('Total number of PoseFlow tracks:', len(all_kps))
print('Processing track_id:', track_id)
kps = all_kps[track_id]
bbox_params_smooth, s, e = get_smooth_bbox_params(kps, vis_thresh=0.1)
images = []
images_orig = []
min_f = max(s, 0)
max_f = min(e, len(kps))
print('----------')
print('Preprocessing frames.')
print('----------')
for i in range(min_f, max_f):
proc_params = process_image(
im_path=im_paths[i],
bbox_param=bbox_params_smooth[i],
)
images.append(proc_params.pop('image'))
images_orig.append(proc_params)
if track_id > 0:
output_path += '_{}'.format(track_id)
mkdir(output_path)
pred_path = osp.join(output_path, 'hmmr_output.pkl')
if osp.exists(pred_path):
print('----------')
print('Loading pre-computed prediction.')
print('----------')
with open(pred_path, 'rb') as f:
preds = pickle.load(f)
else:
print('----------')
print('Running prediction.')
print('----------')
preds = model.predict_all_images(images)
with open(pred_path, 'wb') as f:
print('Saving prediction results to', pred_path)
pickle.dump(preds, f)
if trim_length > 0:
output_path += '_trim'
print('----------')
print('Rendering results to {}.'.format(output_path))
print('----------')
render_preds(
output_path=output_path,
config=config,
preds=preds,
images=images,
images_orig=images_orig,
trim_length=trim_length,
)
def run_on_video(model, vid_path, trim_length):
"""
Main driver.
First extracts alphapose/posetrack in track_dir
Then runs HMMR.
"""
print('----------')
print('Computing tracks on {}.'.format(vid_path))
print('----------')
# See extract_tracks.py
poseflow_path, img_dir = compute_tracks(vid_path, config.track_dir)
vid_name = osp.basename(vid_path).split('.')[0]
out_dir = osp.join(config.out_dir, vid_name, 'hmmr_output')
predict_on_tracks(
model=model,
img_dir=img_dir,
poseflow_path=poseflow_path,
output_path=out_dir,
track_id=config.track_id,
trim_length=trim_length
)
def main(model):
# Make output directory.
mkdir(config.out_dir)
if config.trim:
trim_length = model.fov // 2
else:
trim_length = 0
if config.vid_dir:
vid_paths = sorted(glob(config.vid_dir + '/*.mp4'))
for vid_path in vid_paths:
run_on_video(model, vid_path, trim_length)
else:
run_on_video(model, config.vid_path, trim_length)
if __name__ == '__main__':
config = get_config()
# Set up model:
model_hmmr = Tester(
config,
pretrained_resnet_path='models/hmr_noS5.ckpt-642561'
)
main(model_hmmr)