Skip to content

Latest commit

 

History

History
50 lines (36 loc) · 2.22 KB

README.md

File metadata and controls

50 lines (36 loc) · 2.22 KB

Hands-On-With-Pandas 🐼

A Beginner-Friendly Pandas Tutorial designed to walk you through the essentials of data manipulation and analysis using Python's powerful library, Pandas. Perfect for newcomers and those looking to refresh their skills!

Contents 📘

Introduction 🌈

Begin your data journey with Pandas and discover how to turn raw data into actionable insights.

Creating and Viewing DataFrames and Series 🛠

  • Creating Data Structures: pd.DataFrame(), pd.Series()
  • Viewing Data: df.head(), df.tail(), df.shape, df.dtypes, df.sample()

Data Aggregation and Statistics 📊

  • Summarizing Data: df.sum(), df.mean(), df.median(), df.max(), df.min(), df.count(), df.nunique()
  • Exploratory Data Analysis: df.info(), df.describe(), df.value_counts()

Indexing and Selection 🔎

  • Accessing Data: df['column_name'], df.column_name, df[['column_name']], df.loc[row_label], df.iloc[row_index]
  • Conditional Selection: df[df['column'] > value], df[mask]
  • Advanced Indexing: df.ix[], df.where(), df.query(), df.isin()

Data Manipulation 🛠⚙

  • Modifying DataFrames: df.drop(), df.rename(), df.sort_values(), df.groupby(), df.get_group()
  • Data Type Conversion: df['a'].astype('data_type')
  • Index Management: df.set_index(), df.reset_index(), del df['col']
  • Advanced Manipulation: df.agg(), df.map(), df.rank()

Missing Data Handling 🚧

  • Identifying Missing Data: df.isna(), df.isnull(), df.notnull()
  • Handling Missing Data: df.dropna(), df.fillna()

Data Cleaning and Transformation 🧼

  • Cleaning Operations: df.apply(), df.replace(), df.duplicated(), df.drop_duplicates()

Merging and Joining DataFrames 🔗

  • Combining Data: pd.concat(), pd.merge(), pd.join()

Working with Dates and Times 📅⏲

  • Date-Time Conversion: pd.to_datetime()
  • Time-Series Analysis: df.resample()

Data Visualization 🎨📈

  • Visual Representation: df.plot(), df.hist(), df.boxplot()

IO Operations 💽

  • Reading Data: pd.read_csv(), pd.read_excel()
  • Writing Data: df.to_csv(), df.to_excel()

Dive into the world of data analysis with Pandas and start transforming data into insights today! 🌟