forked from rushter/MLAlgorithms
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfm.py
74 lines (61 loc) · 2.52 KB
/
fm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from mla.base import BaseEstimator
from mla.metrics import mean_squared_error, binary_crossentropy
import autograd.numpy as np
from autograd import elementwise_grad
np.random.seed(9999)
"""
References:
Factorization Machines http://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
"""
class BaseFM(BaseEstimator):
def __init__(self, n_components=10, max_iter=100, init_stdev=0.1, learning_rate=0.01, reg_v=0.1,
reg_w=0.5, reg_w0=0.):
"""Simplified factorization machines implementation using SGD optimizer."""
self.reg_w0 = reg_w0
self.reg_w = reg_w
self.reg_v = reg_v
self.n_components = n_components
self.lr = learning_rate
self.init_stdev = init_stdev
self.max_iter = max_iter
self.loss = None
self.loss_grad = None
def fit(self, X, y=None):
self._setup_input(X, y)
# bias
self.wo = 0.0
# Feature weights
self.w = np.zeros(self.n_features)
# Factor weights
self.v = np.random.normal(scale=self.init_stdev, size=(self.n_features, self.n_components))
self._train()
def _train(self):
for epoch in range(self.max_iter):
y_pred = self._predict(self.X)
loss = self.loss_grad(self.y, y_pred)
w_grad = np.dot(loss, self.X) / float(self.n_samples)
self.wo -= self.lr * (loss.mean() + 2 * self.reg_w0 * self.wo)
self.w -= self.lr * w_grad + (2 * self.reg_w * self.w)
self._factor_step(loss)
def _factor_step(self, loss):
for ix, x in enumerate(self.X):
for i in range(self.n_features):
v_grad = loss[ix] * (x.dot(self.v).dot(x[i])[0] - self.v[i] * x[i] ** 2)
self.v[i] -= self.lr * v_grad + (2 * self.reg_v * self.v[i])
def _predict(self, X=None):
linear_output = np.dot(X, self.w)
factors_output = np.sum(np.dot(X, self.v) ** 2 - np.dot(X ** 2, self.v ** 2), axis=1) / 2.
return self.wo + linear_output + factors_output
class FMRegressor(BaseFM):
def fit(self, X, y=None):
super(FMRegressor, self).fit(X, y)
self.loss = mean_squared_error
self.loss_grad = elementwise_grad(mean_squared_error)
class FMClassifier(BaseFM):
def fit(self, X, y=None):
super(FMClassifier, self).fit(X, y)
self.loss = binary_crossentropy
self.loss_grad = elementwise_grad(binary_crossentropy)
def predict(self, X=None):
predictions = self._predict(X)
return np.sign(predictions)