-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtools.py
executable file
·190 lines (137 loc) · 3.83 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env python3
import random
import os
"""
This module provides some useful functions
: generate random 512 integer
: comute the PGCD(a,b)
: find safe prime numbers
: fast exponentiation
: inverse calculation in Z_p
: find a generator in Z_p
"""
mask_512 = (1 << 512) - 1
state = random.randint(0, 2**512-1)
"""
Implementation of 512 bits Xorshift
"""
def random_512_bits_integer():
global state
x = state
x = x ^ (x << 13) & mask_512
x = x ^ (x >> 17) & mask_512
x = x ^ (x << 5) & mask_512
state = x
return x
"""
Find a 512 safe prime number, with Rabin Miller test
"""
def find_safe_512_bits_prime():
n = random_512_bits_integer()
while len(bin(n)) != 514:
n = random_512_bits_integer()
print("n : "+str(n)+" bit : "+str(len(bin(n))))
if n % 2 == 0:
n = n-1
while True:
# skip obvious not prime numbers
if (n % 3 != 0) or (n % 5 != 0) or (n % 7 != 0) or (n % 9 != 0) or \
(n % 11 != 0) or (n % 13 != 0) or (n % 13 != 0) or \
(n % 17 != 0) or (n % 19 != 0) or (n % 21 != 0) or (n % 23 != 0) or \
(n % 25 != 0) or (n % 27 != 0) or (n % 29 != 0):
if rabin_Miller_test(n) == True:
q = (n-1)//2
if rabin_Miller_test(q) == True:
print(f"{n} is safe prime : q : {q}")
return n
n = n+2
"""
rabin miller test on n, odd integer
"""
def rabin_Miller_test(n, iterations=5):
n_minus_one = n - 1
s = 0
d = 0
while n_minus_one % 2 == 0:
n_minus_one = n_minus_one // 2
s = s+1
d = n_minus_one
it = 0
for i in range(iterations):
a = random.randint(2, n-1)
x = fast_exponentiation(a, d, mod=n)
if (x == 1) or (x == n-1):
continue
for r in range(1, s):
x = (x**2) % n
if x == 1:
return False
if x == n-1:
continue
return False
return True
"""
Compute efficiently a ^ b mod n
"""
def fast_exponentiation(a, b, mod=1):
result = 1
i = 1
while b != 0:
if b % 2 == 1:
result = (result * a) % mod
a = (a*a) % mod
i = i+1
b = b//2
return result
"""
Find a generator in Z_p , p is a safe prime number
"""
def find_generator(safe_prime):
q = (safe_prime-1)//2
i = 0
for alpha in range(2, safe_prime-1):
i = i+1
if (alpha ** 2 % safe_prime) == 1:
continue
if fast_exponentiation(alpha, q, mod=safe_prime) == 1:
continue
return alpha
"""
Extended Euclide algorithm, y_n is the inverse of a mod b
"""
def PGCD_bezout(a, b):
if a < b:
a, b = b, a
r = [a, b]
q = []
x = [1, 0]
y = [0, 1]
i = 2
while r[len(r)-1] != 0:
q_i = r[i-2]//r[i-1]
r_i = r[i-2] % r[i-1]
q.append(q_i)
r.append(r_i)
x.append(q_i*x[i-1] + x[i-2])
y.append(q_i*y[i-1] + y[i-2])
i = i+1
x_n = (-1)**(len(x)) * x[len(x)-2]
y_n = (-1)**(len(y) + 1) * y[len(y)-2]
return r[len(r)-2], x_n, y_n
if __name__ == '__main__':
with open("alice_safe_512_prime_1", "r") as file:
safe_prime = int(file.read())
alpha = find_generator(safe_prime)
print(alpha)
with open("alice_safe_512_prime_2", "r") as file:
safe_prime = int(file.read())
alpha = find_generator(safe_prime)
print(alpha)
with open("bob_safe_512_prime_1", "r") as file:
safe_prime = int(file.read())
alpha = find_generator(safe_prime)
print(alpha)
with open("bob_safe_512_prime_2", "r") as file:
safe_prime = int(file.read())
alpha = find_generator(safe_prime)
print(alpha)