-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
507 lines (415 loc) · 21.3 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
from argparse import Namespace
import glob
import numpy as np
import os
from pathlib import Path
import sys
import torch
from torch import nn
from torch.cuda import amp
from torch.cuda.amp import autocast
from torch.utils.data import DataLoader
from types import SimpleNamespace
import wandb
import math
from statistics import mean
import einops
from tqdm import tqdm
import logging as python_logging
from datetime import datetime
python_logging.basicConfig(level=python_logging.INFO)
is_debug = 'pydevd' in sys.modules
class Trainer(object):
def __init__(self,
model: nn.Module,
training_dataloader: DataLoader,
validation_dataloader: DataLoader,
test_data_loaders: dict,
optimizer: torch.optim.Optimizer,
lr_scheduler: torch.optim.lr_scheduler,
device: str,
eval_every_fraction_epoch: int,
epochs: int,
fp16_enabled: bool,
debug_steps: int,
tokenizer,
preprocess_image,
wandb_config: Namespace,
wandb_run_name: str,
wandb_project: str,
wandb_entity: str,
wandb_mode: str = 'disabled',
resume: bool = False,
):
"""
Trainer class
:param model:
:param training_dataloader:
:param validation_dataloader:
:param optimizer:
:param lr_scheduler:
:param device:
:param eval_every_fraction_epoch:
:param epochs:
:param fp16_enabled:
:param debug_steps:
:param wandb_config
:param wandb_run_name:
:param wandb_project:
:param wandb_entity:
:param wandb_mode:
:param resume:
"""
self.model = model
self.training_dataloader = training_dataloader
self.validation_dataloader = validation_dataloader
self.test_data_loaders = test_data_loaders
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
self.device = device
self.eval_every_fraction_epoch = math.floor(math.floor(len(training_dataloader.dataset) /
training_dataloader.batch_size) /
eval_every_fraction_epoch)
self.epochs = epochs
self.scaler = amp.GradScaler(enabled=fp16_enabled)
self.forward_type = torch.float16 if self.scaler.is_enabled() else torch.float32
self.run_name = wandb_run_name
self.save_checkpoint_dir = wandb_config.dir_to_save_checkpoint
self.resume = resume
self.best_avg_validation_performance = 0
self.debug_steps = debug_steps
self.do_train = wandb_config.do_train
self.do_validation = wandb_config.do_validation
self.do_test = wandb_config.do_test
self.args = wandb_config
self.tokenizer = tokenizer
self.preprocess_image = preprocess_image
self.loss_captioner = nn.CrossEntropyLoss(ignore_index=0)
self.transform_caption = tokenizer["tokenizer"]
if self.resume:
wandb_id = self.resume_model()
if not self.resume or wandb_id is None:
wandb_id = wandb.util.generate_id()
self.run = wandb.init(project=wandb_project,
entity=wandb_entity,
config=wandb_config,
id=wandb_id,
name=wandb_run_name,
resume='allow',
mode=wandb_mode)
self.date = datetime.today().isoformat()
self.eval_step = 0
def resume_model(self) -> str:
"""
"""
# Select path to load
path_to_load = "/last_checkpoint.pth" if not (self.do_validation or self.do_test) else "/best_checkpoint.pth"
files = glob.glob(self.save_checkpoint_dir + path_to_load)
if self.do_train and len(files) == 0:
python_logging.info("No checkpoint found, starting from scratch..")
return None
# Load file and store performances information
last_checkpoint = torch.load(files[0])
self.best_avg_validation_performance = last_checkpoint['avg_validation_performance']
self.model.load_state_dict(last_checkpoint['model_state_dict'])
python_logging.info(f"Loaded {files[0]}")
return last_checkpoint['wandb_id']
def get_check_point_name(self, is_last: bool):
"""
Return checkpoint name based on specified directory.
param: is_last when true return last_checkpoint.pth else best_checkpoint.pth
return:
"""
python_logging.info("Saving last checkpoint..") if is_last else python_logging.info(
"Saving best checkpoint on validation..")
# Create directory if it does not exist
if not os.path.exists(self.save_checkpoint_dir):
os.makedirs(self.save_checkpoint_dir)
# Compute name
name = "last_checkpoint" if is_last else "best_checkpoint"
checkpoint_name = Path(self.save_checkpoint_dir, f'{name}.pth')
return name, checkpoint_name
def save_checkpoint(self,
is_last: bool = True) -> None:
"""
Save checkpoint
param: is_last when true save last_checkpoint.pth else best_checkpoint.pth
"""
name, checkpoint_name = self.get_check_point_name(is_last)
torch.save({
'wandb_id': self.run.id,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'avg_validation_performance': self.best_avg_validation_performance,
}, checkpoint_name)
def train_loop(self, test_compositional: bool) -> None:
"""
Training loop
:param: test_compositional specifies whether to compute compositional test metrics
"""
for _ in range(0, self.epochs):
self.train()
if test_compositional:
test_metrics = self.test_compositional()
self.log_test_wandb(test_metrics)
def train(self) -> None:
self.model.train()
python_logging.info("Training model..")
for step, batch in enumerate(self.training_dataloader):
if is_debug and step > self.debug_steps:
break
loss = self.compute_loss(batch)
if self.scaler.is_enabled():
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
else:
loss.backward()
self.optimizer.step()
self.lr_scheduler.step()
self.optimizer.zero_grad()
if step % self.eval_every_fraction_epoch == 0 and step != 0:
validate_metrics, _ = self.validate()
self.run.log({"validation/" + k: validate_metrics[k] for k in list(validate_metrics.keys())})
avg_validation_metric = mean(list(validate_metrics.values()))
if avg_validation_metric >= self.best_avg_validation_performance:
self.best_avg_validation_performance = avg_validation_metric
self.save_checkpoint(is_last=False)
self.save_checkpoint(is_last=True)
self.model.train()
def validate(self):
"""
:return: metrics performances on validation
"""
self.model.eval()
python_logging.info("Validate model..")
for it, batch in enumerate(self.validation_dataloader):
if is_debug and it > self.debug_steps:
break
batch_output = self.prediction_step(batch)
update_embeddings = {
"gt_input_ids": np.array(batch_output["gt_input_ids"]),
"false_input_ids": np.array(batch_output["false_input_ids"]),
"unique_ids": np.array(batch["unique_ids"])}
self.validation_dataloader.dataset.update_embeddings(update_embeddings)
metrics_val = self.validation_dataloader.dataset.compute_metrics()
self.validation_dataloader.dataset.clean_embedding_dict()
python_logging.info(f"Validation metric: {metrics_val}")
return metrics_val
def arrange_input_for_validation(self,
batch: dict):
"""
:param batch input dict
"""
gt_images = batch["gt_images"].to(self.device).to(self.forward_type)
gt_input_ids = batch["gt_input_ids"].to(self.device)
false_input_ids = batch["false_input_ids"].to(self.device)
true_caption_masks = batch["true_caption_mask"].to(self.device)
gt_likelihood_ids = batch["gt_likelihood_ids"].to(self.device)
false_captions_masks = batch["false_caption_mask"].to(self.device)
false_likelihood_ids = batch["false_likelihood_ids"].to(self.device)
return gt_images, gt_input_ids, false_input_ids, true_caption_masks, false_captions_masks, gt_likelihood_ids, \
false_likelihood_ids
def update_test_metrics(self,
metrics: dict,
dataset_name: str,
autoregressive: bool = False) -> dict:
"""
Update test metrics for the selected dataset
"""
if dataset_name in ["colorswap"]:
metrics.update({dataset_name:
self.test_data_loaders[dataset_name].dataset.compute_metrics_colorswap()})
else:
metrics.update({dataset_name:
self.test_data_loaders[dataset_name].dataset.compute_metrics()})
return metrics
def compute_loss(self, batch: dict) -> torch.Tensor:
"""
:param batch:
:return:
"""
inputs = SimpleNamespace(**batch)
pixel_values = batch['gt_images'].to(device=self.device).to(self.forward_type)
tokenized_captions = batch['gt_input_ids'].to(device=self.device)
masks = inputs.true_caption_mask.to(self.device)
with autocast(dtype=self.forward_type):
# logits dimension: (B, L, D)
out = self.model(pixel_values, tokenized_captions, masks)
shift_logits = out.logits.contiguous()
shift_labels = batch["ground_truth"].to(torch.int64).to(self.device).contiguous()
loss = self.loss_captioner(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
self.run.log({"training/training_loss": loss.item()})
return loss
def prediction_step(self, batch: dict) -> dict:
"""
:param batch:
:return:
"""
gt_images, gt_input_ids, false_input_ids, true_captions_masks, false_captions_masks, gt_likelihood_ids, \
false_likelihood_ids = self.arrange_input_for_validation(batch)
unique_ids = batch["unique_ids"]
unique_ids_list = [el - min(batch["unique_ids"]).tolist() for el in unique_ids.tolist()]
embeddings = {}
with torch.no_grad():
# Compute outputs embedding
with autocast(dtype=self.forward_type):
embeddings_positive = self.model(pixel_values=gt_images,
captions=gt_input_ids,
attention_mask=true_captions_masks).logits
embeddings_negative = self.model(pixel_values=torch.cat([gt_images[int(i)].unsqueeze(dim=0)
for i in unique_ids_list], dim=0),
captions=false_input_ids,
attention_mask=false_captions_masks).logits
likelihood_gt = gt_likelihood_ids.to(torch.int64).to(self.device)
likelihood_neg = false_likelihood_ids.to(torch.int64).to(self.device)
embeddings.update({"gt_input_ids": compute_likelihood(embeddings_positive,
likelihood_gt).cpu()})
embeddings.update({"false_input_ids": compute_likelihood(embeddings_negative,
likelihood_neg).cpu()})
embeddings.update({"unique_ids": batch["unique_ids"].cpu()})
return embeddings
def test_compositional(self) -> dict:
"""
:return: metrics on test sets
"""
python_logging.info("Testing model..")
# Store metrics and embedding dict
metrics = {}
self.model.eval()
# For each dataloader
for dataset_name in list(self.test_data_loaders.keys()):
python_logging.info(f"Computing metrics on: {dataset_name}")
# Cycle over samples
for it, sample in enumerate(tqdm(self.test_data_loaders[dataset_name],
mininterval=1, total=len(self.test_data_loaders[dataset_name]))):
if is_debug and it > self.debug_steps:
break
# Read images, true captions and false captions
images, true_captions, false_captions, true_captions_masks, false_captions_masks, gt_likelihood_ids, \
false_likelihood_ids = \
self.arrange_input_for_validation(sample)
embeddings = {}
if "colorswap" in dataset_name:
true_captions = torch.cat([einops.repeat(true_captions[i].unsqueeze(dim=0), "1 L -> 2 L")
for i in range(true_captions.shape[0])], dim=0)
false_captions = torch.cat([einops.repeat(false_captions[i].unsqueeze(dim=0), "1 L -> 2 L")
for i in range(false_captions.shape[0])], dim=0)
true_captions_masks = torch.cat(
[einops.repeat(true_captions_masks[i].unsqueeze(dim=0), "1 C H W -> 2 C H W")
for i in range(true_captions_masks.shape[0])], dim=0)
false_captions_masks = torch.cat(
[einops.repeat(false_captions_masks[i].unsqueeze(dim=0), "1 C H W -> 2 C H W")
for i in range(false_captions_masks.shape[0])], dim=0)
gt_likelihood_ids = torch.cat(
[einops.repeat(gt_likelihood_ids[i].unsqueeze(dim=0), "1 L -> 2 L")
for i in range(gt_likelihood_ids.shape[0])], dim=0)
false_likelihood_ids = torch.cat(
[einops.repeat(false_likelihood_ids[i].unsqueeze(dim=0), "1 L -> 2 L")
for i in range(false_likelihood_ids.shape[0])], dim=0)
with torch.no_grad():
# Compute outputs embedding
if true_captions.shape[0] > images.shape[0]:
embeddings_positive = self.model(pixel_values=torch.cat([einops.repeat(
images[i].unsqueeze(dim=0), "1 C H W -> N C H W",
N=int(true_captions.shape[0] / images.shape[0]))
for i in range(images.shape[0])], dim=0),
captions=true_captions,
attention_mask=true_captions_masks).logits
else:
embeddings_positive = self.model(pixel_values=images,
captions=true_captions,
attention_mask=true_captions_masks).logits
ratio = 1
if false_captions.shape[0] > images.shape[0]:
ratio = int(false_captions.shape[0] / images.shape[0])
images = torch.cat([einops.repeat(images[i].unsqueeze(dim=0), "1 C H W -> N C H W", N=ratio)
for i in range(images.shape[0])])
embeddings_negative = self.model(pixel_values=images,
captions=false_captions,
attention_mask=false_captions_masks).logits
# Convention: in gt_images the likelihood with the true caption, in captions the likelihood
# with negative
gt_images_likelihood = np.expand_dims(np.array(compute_likelihood(embeddings_positive,
gt_likelihood_ids).cpu()),
axis=1)
captions_likelihood = np.array(compute_likelihood(embeddings_negative,
false_likelihood_ids).cpu())
if len(captions_likelihood.shape) == 1:
captions_likelihood = np.expand_dims(captions_likelihood, axis=1)
if ratio != 1:
captions_likelihood = np.concatenate([np.transpose(captions_likelihood[i:i + ratio])
for i in
range(0, captions_likelihood.shape[0], ratio)])
embeddings.update({"gt_images": gt_images_likelihood})
embeddings.update({"captions": captions_likelihood})
self.test_data_loaders[dataset_name].dataset.update_embeddings(embeddings)
# Update metrics dict
metrics = self.update_test_metrics(metrics, dataset_name)
# Clean data loader
self.test_data_loaders[dataset_name].dataset.clean_embedding_dict()
metrics = process_metrics(metrics)
log_metrics(metrics)
return metrics
def compute_likelihood(logits: torch.Tensor, gt_input_ids: torch.Tensor) -> torch.Tensor:
"""
:param logits:
:param attention_parser_mask:
:param gt_input_ids:
:param likelihood_computation:
"""
# Mask padding tokens
logits = torch.nn.functional.softmax(logits, dim=-1)
logits = torch.gather(logits, 2, einops.repeat(gt_input_ids.unsqueeze(dim=2).to(torch.int64),
"B L 1 -> B L H",
H=logits.shape[2]))[:, :, 0]
logits = torch.log(logits)
logits[gt_input_ids == 0] = 0
logits = torch.sum(logits, dim=-1)
return logits
def process_metrics(metrics: dict) -> dict:
if "sugar_crepe" in list(metrics.keys()):
metrics['sugar_crepe']['replace'] = (metrics['sugar_crepe']['fine_grained_results']['replace_obj'] +
metrics['sugar_crepe']['fine_grained_results']['replace_rel'] +
metrics['sugar_crepe']['fine_grained_results']['replace_att']) / 3
metrics['sugar_crepe']['swap'] = (metrics['sugar_crepe']['fine_grained_results']['swap_obj'] +
metrics['sugar_crepe']['fine_grained_results']['swap_att']) / 2
metrics['sugar_crepe']['add'] = (metrics['sugar_crepe']['fine_grained_results']['add_obj'] +
metrics['sugar_crepe']['fine_grained_results']['add_att']) / 2
del metrics['sugar_crepe']['fine_grained_results']
if 'visual_genome_relation' in list(metrics.keys()):
del metrics['visual_genome_relation']['fine_grained_results']
if 'visual_genome_attribution' in list(metrics.keys()):
del metrics['visual_genome_attribution']['fine_grained_results']
return metrics
def log_metrics(metrics: dict):
for dataset in metrics:
python_logging.info(f"\n------------------\nMetrics for {dataset}:")
metrics_formatted = metrics_format(metrics[dataset])
k_width = max(len(str(x)) for x in metrics_formatted.keys())
v_width = max(len(str(x)) for x in metrics_formatted.values())
metrics_to_print = metrics_formatted.keys()
for key in sorted(metrics_formatted.keys()):
python_logging.info(f" {key: <{k_width}} = {metrics_formatted[key]:>{v_width}}")
if 'avg_accuracy' not in metrics_to_print and 'avg_accuracy' in metrics[dataset]:
python_logging.info(f" {'avg_accuracy': <{k_width}} = {metrics[dataset]['avg_accuracy']:>{v_width}}")
if 'top_1_recall_img2text' not in metrics_to_print and 'top_1_recall_img2text' in metrics[dataset]:
if 'top_1_recall_img2text' not in metrics_to_print and 'top_1_recall_img2text' in metrics[dataset]:
python_logging.info(
f" {'top_1_recall_img2text': <{k_width}} = {metrics[dataset]['top_1_recall_img2text']:>{v_width}}")
def metrics_format(metrics):
"""
Reformat Trainer metrics values to a human-readable format
Args:
metrics (`Dict[str, float]`):
The metrics returned from train/evaluate/predict
Returns:
metrics (`Dict[str, float]`): The reformatted metrics
"""
if 'fine_grained_results' in metrics:
metrics_copy = dict(sorted(metrics['fine_grained_results'].copy().items()))
else:
metrics_copy = dict(sorted(metrics.copy().items()))
for k, v in metrics_copy.items():
metrics_copy[k] = round(v, 4)
return metrics_copy