-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathengine_pretrain.py
101 lines (83 loc) · 3.3 KB
/
engine_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# --------------------------------------------------------
# References:
# SatMAE: https://github.com/sustainlab-group/SatMAE
# MAE: https://github.com/facebookresearch/mae
# --------------------------------------------------------
import contextlib
import math
import sys
from typing import Iterable
import torch
import util.lr_sched as lr_sched
import util.misc as misc
import wandb
def train_one_epoch(
model: torch.nn.Module,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
loss_scaler,
log_writer=None,
args=None,
):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", misc.SmoothedValue(window_size=1, fmt="{value:.6f}"))
header = f"Epoch: [{epoch}]"
print_freq = 20
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
print(f"log_dir: {log_writer.log_dir}")
for data_iter_step, (samples, _) in enumerate(
metric_logger.log_every(data_loader, print_freq, header)
):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(
optimizer, data_iter_step / len(data_loader) + epoch, args
)
samples = samples.to(device, non_blocking=True)
with torch.cuda.amp.autocast():
loss, _, _ = model(samples, mask_ratio=args.mask_ratio)
loss_value = loss.item()
if not math.isfinite(loss_value):
print(f"Loss is {loss_value}, stopping training")
raise ValueError(f"Loss is {loss_value}, stopping training")
# sys.exit(1)
loss /= accum_iter
loss_scaler(
loss,
optimizer,
parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0,
)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
train_lr_step = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=train_lr_step)
train_loss_step = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
"""We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar("train_loss", train_loss_step, epoch_1000x)
log_writer.add_scalar("lr", train_lr_step, epoch_1000x)
# Wandb logging
if args.local_rank == 0 and args.wandb_project is not None:
with contextlib.suppress(ValueError):
wandb.log(
{
"train_loss_step": train_loss_step,
"train_lr_step": train_lr_step,
"epoch_1000x": epoch_1000x,
}
)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}