-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainFaceRecoginzer.py
66 lines (59 loc) · 2.3 KB
/
TrainFaceRecoginzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# develop a classifier for the 5 Celebrity Faces Dataset
from numpy import load
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import Normalizer
from sklearn.svm import SVC
import os
import pickle
import numpy as np
# load dataset
data = load('data/Employe-faces-embeddings.npz')
trainX, trainy, testX, testy = data['arr_0'], data['arr_1'], data['arr_2'], data['arr_3']
print('Dataset: train=%d, test=%d' % (trainX.shape[0], testX.shape[0]))
if not os.path.exists("models"):
os.mkdir("models")
def TrainSkLearnModel(trainX,testX,trainy,testy):
# normalize input vectors
in_encoder = Normalizer(norm='l2')
trainX = in_encoder.transform(trainX)
testX = in_encoder.transform(testX)
# label encode targets
out_encoder = LabelEncoder()
out_encoder.fit(trainy)
classes=[c+"\n" for c in list(out_encoder.classes_)]
with open("models/classes_name.txt",'w') as f:
f.writelines(classes)
trainy = out_encoder.transform(trainy)
testy = out_encoder.transform(testy)
# fit model
model = SVC(kernel='linear', probability=True)
model.fit(trainX, trainy)
pickle.dump(model, open("models/detect.p", 'wb'))
# predict
yhat_train = model.predict(trainX)
yhat_test = model.predict(testX)
# score
score_train = accuracy_score(trainy, yhat_train)
score_test = accuracy_score(testy, yhat_test)
# summarize
print('Accuracy: train=%.3f, test=%.3f' % (score_train*100, score_test*100))
def getAvereageFeatureOfClasses(trainX,trainy):
unique_Label=np.unique(trainy)
train_data=np.concatenate((trainX,np.expand_dims(trainy,axis=1)),axis=1)
train_data=[train_data[train_data[:,-1]==ul][:,:-1] for ul in unique_Label]
train_mean=np.array([np.mean(data.astype(np.float),axis=0) for data in train_data])
np.savez_compressed('data/classes_mean.npz', train_mean)
print(("Seaved Class mean"))
def removePerson(name,trainX, testX, trainy, testy):
trainX = trainX[trainy != name]
trainy = trainy[trainy != name]
testX = testX[testy != name]
testy = testy[testy != name]
return trainX, testX, trainy, testy
if __name__=="__main__":
print(trainX.shape,trainy.shape)
# trainX, testX, trainy, testy=removePerson("Parmpal", trainX, testX, trainy, testy)
print(trainX.shape,trainy.shape)
getAvereageFeatureOfClasses(trainX, trainy)
TrainSkLearnModel(trainX, testX, trainy, testy)