generated from FinTechIntro/2024-Spring-HW2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathArbitrage.py
136 lines (104 loc) · 4.09 KB
/
Arbitrage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
tokens = {
0: "tokenA",
1: "tokenB",
2: "tokenC",
3: "tokenD",
4: "tokenE",
}
_liquidity = {
("tokenA", "tokenB"): (17000000000000000000, 10000000000000000000),
("tokenA", "tokenC"): (11000000000000000000, 7000000000000000000),
("tokenA", "tokenD"): (15000000000000000000, 9000000000000000000),
("tokenA", "tokenE"): (21000000000000000000, 5000000000000000000),
("tokenB", "tokenC"): (36000000000000000000, 4000000000000000000),
("tokenB", "tokenD"): (13000000000000000000, 6000000000000000000),
("tokenB", "tokenE"): (25000000000000000000, 3000000000000000000),
("tokenC", "tokenD"): (30000000000000000000, 12000000000000000000),
("tokenC", "tokenE"): (10000000000000000000, 8000000000000000000),
("tokenD", "tokenE"): (60000000000000000000, 25000000000000000000),
}
reversed_liquidity = {}
for pair, values in _liquidity.items():
reversed_liquidity[(pair[1], pair[0])] = (values[1], values[0])
_liquidity.update(reversed_liquidity)
def getReserves(factory, tokenA, tokenB):
(reserveA, reserveB) = (factory[(tokenA, tokenB)][0], factory[(tokenA, tokenB)][1])
return (reserveA, reserveB)
def getAmountIn(amountOut, reserveIn, reserveOut):
numerator = reserveIn * amountOut * 1000
denominator = (reserveOut - amountOut) * 997
amountIn = int(numerator / denominator) + 1
return amountIn
def getAmountOut(amountIn, reserveIn, reserveOut):
amountInWithFee = amountIn * 997
numerator = amountInWithFee * reserveOut
denominator = reserveIn * 1000 + amountInWithFee
amountOut = int(numerator / denominator)
return amountOut if (reserveOut > amountOut) else reserveOut
def swap(liquidity, path, amountIn):
liquidity.update(_liquidity)
tokenIn = path[:-1]
tokenOut = path[1:]
betterAmountIn = [amountIn] + [0] * (len(path) - 1)
out, reserveIn, reserveOut = (
[0] * (len(path) - 1),
[0] * (len(path) - 1),
[0] * (len(path) - 1),
)
for i in range(len(path) - 1):
(reserveIn[i], reserveOut[i]) = getReserves(liquidity, tokenIn[i], tokenOut[i])
out[i] = getAmountOut(betterAmountIn[i], reserveIn[i], reserveOut[i])
betterAmountIn[i] = getAmountIn(out[i], reserveIn[i], reserveOut[i])
betterAmountIn[i + 1] = out[i]
liquidity[(tokenOut[i], tokenIn[i])] = (
liquidity[(tokenOut[i], tokenIn[i])][0] - out[i],
liquidity[(tokenOut[i], tokenIn[i])][1] + betterAmountIn[i],
)
liquidity[(tokenIn[i], tokenOut[i])] = (
liquidity[(tokenOut[i], tokenIn[i])][1],
liquidity[(tokenOut[i], tokenIn[i])][0],
)
return betterAmountIn
def after_path(token_path, liquidity={}):
liquidity.update(_liquidity)
j = swap(liquidity, token_path, 5000000000000000000)
return j
paths_list = []
def recursive_append_path(loop_depth, loop_ranges, token_path=["tokenB"]):
if loop_depth == 0:
if token_path[-1] != "tokenB":
token_path += ["tokenB"]
paths_list.append(token_path)
else:
for i in range(loop_ranges[loop_depth - 1]):
if token_path[-1] != tokens[i]:
recursive_append_path(
loop_depth - 1, loop_ranges, token_path + [tokens[i]]
)
loop_ranges = []
for length in range(9): # modify this for longer loops
loop_ranges += [5]
recursive_append_path(len(loop_ranges), loop_ranges)
max = 5000000000000000000
optimal_path = []
betterIn = []
for path in paths_list:
betterAmountIn = after_path(path)
if 5000000000000000000 + betterAmountIn[-1] - betterAmountIn[0] > max:
max = 5000000000000000000 + betterAmountIn[-1] - betterAmountIn[0]
optimal_path = path
betterIn = betterAmountIn
def string_for_print(path):
output = path[0]
for i in range(1, len(path)):
output += "->" + path[i]
output += ", tokenB balance="
return output
## for report 1
# b = [int(x / 10**12) / 1000000 for x in betterIn]
# for c in b:
# print(f"{c:.6f}")
print(
"path:",
string_for_print(optimal_path) + f"{int(max / 10**12) / 1000000:.6f}" + ".",
)