-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
346 lines (287 loc) · 12.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# +
# %load_ext autoreload
# %autoreload 2
import torch
import sys, os
import json
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
import torch.optim as optim
import random
import torch.backends.cudnn as cudnn
sys.setrecursionlimit(15000)
import time
from PIL import Image
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from tqdm.notebook import tqdm
from utils import ImageShow,draw_size_acc,one_hot
from utils import confusion_matrix,metrics_scores,pff
# model
from dat_local_attention_base_backbone import DAT
# +
# Settings.
sys.path.append(os.pardir)
device = torch.device('cuda:1' if torch.cuda.is_available() else "cpu")
img_title = "HAM10000"
best_acc = 0.
eval_acc = 0.
best_train = 0.
dict_batch = {}
dict_imgSize = {}
np.random.seed(10)
torch.manual_seed(10)
torch.cuda.manual_seed(10)
random.seed(10)
cudnn.benchmark = False
cudnn.deterministic = True
torch.cuda.manual_seed_all(10)
#defined
try:
print(len(train_acc_list))
except NameError:
train_loss_list = []
train_acc_list = []
test_loss_list = []
test_acc_list = []
test_auc_list = []
val_loss_list = []
val_acc_list = []
# -
def get_data(trans_test='312'):
global test_dataset,train_loader,val_loader,test_loader
global train_num,val_num,test_num,n_classes,cla_dict
data_transform = {
"train": transforms.Compose([transforms.RandomResizedCrop((224, 224)),
transforms.RandomVerticalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
"val": transforms.Compose([transforms.Resize((227, 227)),
transforms.CenterCrop((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]),
"test": transforms.Compose([transforms.Resize((trans_test,trans_test)),
transforms.CenterCrop((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
}
data_root = os.path.abspath(os.path.join(os.getcwd(),"..")) # get data root path
image_path = os.path.join('/workspace/euihyun/bmvc/dataset/HAM10000', "images")#
assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
train_dataset = datasets.ImageFolder(root=os.path.join(image_path,train_doc),#
transform=data_transform["train"])
val_dataset = datasets.ImageFolder(root=os.path.join(image_path,val_doc),
transform=data_transform["val"])
test_dataset = datasets.ImageFolder(root=os.path.join(image_path,test_doc),
transform=data_transform["test"])
train_num = len(train_dataset)
val_num = len(val_dataset)
test_num = len(test_dataset)
data_list = train_dataset.class_to_idx
cla_dict = dict((val, key) for key, val in data_list.items())
n_classes = len(data_list)
print(f'Using {n_classes } classes.')
# write dict into json file
json_str = json.dumps(cla_dict, indent=4)
with open(f'{img_title}.json', 'w') as json_file:#class_indices
json_file.write(json_str)
pin_memory = True
train_loader = DataLoader(train_dataset,batch_size=BatchSize,
pin_memory=pin_memory,
shuffle=True,num_workers=4)
val_loader = DataLoader(val_dataset,batch_size=V_size,
pin_memory=pin_memory,
shuffle=False,num_workers=nw)
test_loader = DataLoader(test_dataset,batch_size=T_size,
pin_memory=pin_memory,
shuffle=False,num_workers=nw)
print("using {} images for training, 0 images for validation, 0 images for testing.".format(train_num,
val_num,
test_num))
# +
BatchSize = 100
V_size = 64
T_size = 64
train_doc = "train"
val_doc = "val"
test_doc = "test"
nw = min([os.cpu_count(), BatchSize if BatchSize > 1 else 0, 6])
print(f'Using {nw} dataloader workers every process.')
get_data()
# +
img_size = 224
network = DAT(img_size=img_size,
patch_size=4,
num_classes=7,
expansion=4,
dim_stem=128,
dims=[128, 256, 512, 1024],
depths=[2, 2, 18, 2],
stage_spec=[['L', 'S'], ['L', 'S'], ['L', 'D', 'L', 'D', 'L', 'D', 'L', 'D', 'L', 'D', 'L', 'D', 'L', 'D', 'L', 'D', 'L', 'D'], ['L', 'D']],
heads=[4, 8, 16, 32],
window_sizes=[7, 7, 7, 7],
groups=[-1, -1, 4, 8],
use_pes=[False, False, True, True],
dwc_pes=[False, False, False, False],
strides=[-1, -1, 1, 1],
sr_ratios=[-1, -1, -1, -1],
offset_range_factor=[-1, -1, 2, 2],
no_offs=[False, False, False, False],
fixed_pes=[False, False, False, False],
use_dwc_mlps=[False, False, False, False],
use_conv_patches=False,
drop_rate=0.1,
attn_drop_rate=0.0,
drop_path_rate=0.6)
network = network.to(device)
# -
def train(epoch, criterion):
network.train()
global best_train,train_evl_result#,evl_tmp_result
running_loss,r_pre = 0., 0.
print_step = len(train_loader)//10
curr_iter = (epoch - 1) * len(train_loader)
max_iter = 300 * len(train_loader)
steps_num = len(train_loader)
tmp_size = BatchSize
print(f'\033[1;32m[Train Epoch:[{epoch}]{img_title} ==> Training]\033[0m ...')
optimizer.zero_grad()
train_tmp_result = torch.zeros(n_classes,n_classes)
for batch_idx, (data, target) in enumerate(tqdm(train_loader)):
batch_idx += 1
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
pred, _ = network(data)
loss = criterion(pred, target)
loss.backward()
torch.nn.utils.clip_grad_norm_(network.parameters(), 1.0)
optimizer.step()
lr_ = base_lr * (1.0 - curr_iter / max_iter) ** 0.9
for param_group in optimizer.param_groups:
param_group['lr'] = lr_
running_loss += loss.item()
pred = pred.max(1, keepdim=True)[1]
r_pre += pred.eq(target.view_as(pred)).squeeze().sum()
tmp_pre = r_pre/(batch_idx*BatchSize)
if batch_idx % print_step == 0 and batch_idx != steps_num:
print("[{}/{}] Loss{:.5f},ACC:{:.5f}".format(batch_idx,len(train_loader),
loss,tmp_pre))
if batch_idx % steps_num == 0 and train_num % tmp_size != 0:
tmp_size = train_num % tmp_size
for i in range(tmp_size):
pred_cpu = pred.cpu()
pred_x = pred_cpu.numpy()
train_tmp_result[target[i]][pred_x[i]] +=1
if best_train < tmp_pre and tmp_pre >= 80:
torch.save(network.state_dict(), iter_path)
epoch_acc = r_pre / train_num
epoch_loss = running_loss / len(train_loader)
train_loss_list.append(epoch_loss)
train_acc_list.append(epoch_acc)
if best_train < epoch_acc:
best_train = epoch_acc
train_evl_result = train_tmp_result.clone()
torch.save(network.state_dict(), last_path)
torch.save(train_evl_result, f'./tmp/{img_title}/{suf}/train_evl_result.pth')
print("Train Epoch:[{}] Loss:{:.5f},Acc:{:.5f},Best_train:{:.5f}".format(epoch,epoch_loss,
epoch_acc,best_train))
def test(split, criterion):
network.eval()
global test_acc,eval_acc,best_acc,net_parameters
global test_evl_result,val_evl_result#,evl_tmp_result
cor_loss,correct,Auc, Acc= 0, 0, 0, 0
evl_tmp_result = torch.zeros(n_classes,n_classes)
if split == 'val':
data_loader = val_loader
tmp_size = V_size
data_num = val_num
elif split == 'test':
data_loader = test_loader
tmp_size = T_size
data_num = test_num
steps_num = len(data_loader)
print(f'\033[35m{img_title} ==> {split} ...\033[0m')
with torch.no_grad():
for batch_idx, (data, target) in enumerate(tqdm(data_loader)):
batch_idx +=1
target_indices = target#torch.Size([batch, 7])
target_one_hot = one_hot(target, length=n_classes)
data, target = Variable(data).to(device), Variable(target_one_hot).to(device)
output, _ = network(data)#torch.Size([batch_size, 7, 16, 1])
loss = criterion(output, target)
pred = output.max(1, keepdim=True)[1].cpu()
if batch_idx % steps_num == 0 and data_num % tmp_size != 0:
tmp_size = data_num % tmp_size
for i in range(tmp_size):
pred_y = pred.numpy()
evl_tmp_result[target_indices[i]][pred_y[i]] +=1
diag_sum = torch.sum(evl_tmp_result.diagonal())
all_sum = torch.sum(evl_tmp_result)
test_acc = 100. * float(torch.div(diag_sum,all_sum))
print(f"{split}_Acc:\033[1;32m{round(float(test_acc),3)}%\033[0m")
if split == 'val':
val_acc_list.append(test_acc)
if test_acc >= best_acc:
best_acc = test_acc
val_evl_result = evl_tmp_result.clone()#copy.deepcopy(input)
torch.save(network.state_dict(), save_PATH)
torch.save(val_evl_result, f'./tmp/{img_title}/{suf}/best_evl_result.pth')
print(f"Best_val:\033[1;32m[{round(float(best_acc),3)}%]\033[0m")
else:
test_acc_list.append(test_acc)
if test_acc >= eval_acc:
eval_acc = test_acc
test_evl_result = evl_tmp_result.clone()#copy.deepcopy(input)
torch.save(network.state_dict(), f'./tmp/{img_title}/{suf}/{split}_best_{img_title}_{suf}.pth')
torch.save(test_evl_result, f'./tmp/{img_title}/{suf}/{split}_evl_result.pth')
print(f"Best_eval:\033[1;32m[{round(float(eval_acc),3)}%]\033[0m")
#create store
try:
print(f"suf:{suf}")
except NameError:
suf = time.strftime("%m%d_%H%M%S", time.localtime())
print(f"suf:{suf}")
iter_path = f'./tmp/{img_title}/{suf}/train_{img_title}_{suf}.pth'
save_PATH = f'./tmp/{img_title}/{suf}/best_{img_title}_{suf}.pth'
last_path = f'./tmp/{img_title}/{suf}/last_{img_title}_{suf}.pth'
print(save_PATH)
base_lr = 1e-4
optimizer = optim.AdamW(network.parameters(), lr=base_lr, eps=1e-08, weight_decay=0.05)
num_epochs = 300
criterion = nn.CrossEntropyLoss().to(device)
# +
import time
accs = 0
early_stop = 0
for epoch in range(1, num_epochs + 1):
train(epoch, criterion)
test('val', criterion)
if best_train > accs:
accs = best_train
else:
early_stop += 1
if early_stop == 20:
break
print('Finished Training')
# +
network.load_state_dict(torch.load(save_PATH))
for k in range(22,33):
T_size = k
print(f"T_size:{k}")
for i in range(300,325):
get_data(i)
print(f"size:{i}")
for j in range(5):
test("test", criterion)
if dict_imgSize.get(i) is None or dict_imgSize[i] < test_acc:
dict_imgSize[i] = test_acc
if dict_batch.get(k) is None or dict_batch[k] < test_acc:
dict_batch[k] = test_acc
elif dict_batch.get(k) is None or dict_batch[k] < test_acc:
dict_batch[k] = test_acc