forked from MadsJensen/CAA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsk_predict_correct_target.py
42 lines (30 loc) · 1.32 KB
/
sk_predict_correct_target.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy as np
import pandas as pd
from my_settings import *
from sklearn.ensemble import AdaBoostClassifier
from sklearn.cross_validation import StratifiedShuffleSplit, cross_val_score
from sklearn.grid_search import GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
data = pd.read_csv(data_path +
"alpha_mean_pow_data_extracted_phase_target.csv")
data = data.drop("mean", 1)
data["corr"], corr_lbl = pd.factorize(data.correct)
data_dv = pd.get_dummies(data[["ROI", "condition_side",
"condition_type", "phase"]])
data_dv["pow"] = data.power
data_itc = pd.read_csv(data_path +
"alpha_mean_itc_data_extracted_phase_target.csv")
data_itc = data_itc.drop("mean", 1)
data_dv["itc"] = data_itc["itc"]
y = data["corr"].get_values()
X = data_dv.get_values()
cv = StratifiedShuffleSplit(y, n_iter=10)
ada_params = {"adaboostclassifier__n_estimators": np.arange(1, 50, 1),
"adaboostclassifier__learning_rate": np.arange(0.01, 1, 0.1)}
ada = AdaBoostClassifier
scaler_pipe = make_pipeline(StandardScaler(), AdaBoostClassifier())
grid = GridSearchCV(scaler_pipe, param_grid=ada_params, cv=cv)
ada_grid.fit(X, y)
ada = ada_grid.best_estimator_
scores = cross_val_score(ada, X, y, cv=cv, scoring="roc_auc")