-
Notifications
You must be signed in to change notification settings - Fork 169
/
Copy pathopts.py
executable file
·211 lines (195 loc) · 18.2 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import argparse
def parse_opts():
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', default='/root/data/ActivityNet', type=str, help='Root directory path of data')
parser.add_argument('--video_path', default='video_kinetics_jpg', type=str, help='Directory path of Videos')
parser.add_argument('--annotation_path', default='kinetics.json', type=str, help='Annotation file path')
parser.add_argument('--result_path', default='results', type=str, help='Result directory path')
parser.add_argument('--store_name', default='model', type=str, help='Name to store checkpoints')
parser.add_argument('--modality', default='RGB', type=str, help='Modality of generated model. RGB, Flow or RGBFlow')
parser.add_argument('--pretrain_modality', default='RGB', type=str, help='Modality of the pretrain model. RGB, Flow or RGBFlow')
parser.add_argument('--dataset', default='kinetics', type=str, help='Used dataset (activitynet | kinetics | ucf101 | hmdb51)')
parser.add_argument('--n_classes', default=400, type=int, help='Number of classes (activitynet: 200, kinetics: 400, ucf101: 101, hmdb51: 51)')
parser.add_argument('--n_finetune_classes', default=400, type=int, help='Number of classes for fine-tuning. n_classes is set to the number when pretraining.')
parser.add_argument('--sample_size', default=112, type=int, help='Height and width of inputs')
parser.add_argument('--sample_duration', default=16, type=int, help='Temporal duration of inputs')
parser.add_argument('--downsample', default=1, type=int, help='Downsampling. Selecting 1 frame out of N')
parser.add_argument('--initial_scale', default=1.0, type=float, help='Initial scale for multiscale cropping')
parser.add_argument('--n_scales', default=5, type=int, help='Number of scales for multiscale cropping')
parser.add_argument('--scale_step', default=0.84089641525, type=float, help='Scale step for multiscale cropping')
parser.add_argument('--train_crop', default='corner', type=str, help='Spatial cropping method in training. random is uniform. corner is selection from 4 corners and 1 center. (random | corner | center)')
parser.add_argument('--learning_rate', default=0.04, type=float, help='Initial learning rate (divided by 10 while training by lr scheduler)')
parser.add_argument('--lr_steps', default=[15, 25, 35, 45, 60, 50, 200, 250], type=float, nargs="+", metavar='LRSteps', help='epochs to decay learning rate by 10') # [15, 30, 37, 50, 200, 250]
parser.add_argument('--momentum', default=0.9, type=float, help='Momentum')
parser.add_argument('--dampening', default=0.9, type=float, help='dampening of SGD')
parser.add_argument('--weight_decay', default=1e-3, type=float, help='Weight Decay')
parser.add_argument('--mean_dataset', default='activitynet', type=str, help='dataset for mean values of mean subtraction (activitynet | kinetics)')
parser.add_argument('--no_mean_norm', action='store_true', help='If true, inputs are not normalized by mean.')
parser.set_defaults(no_mean_norm=False)
parser.add_argument('--std_norm', action='store_true', help='If true, inputs are normalized by standard deviation.')
parser.set_defaults(std_norm=False)
parser.add_argument('--nesterov', action='store_true', help='Nesterov momentum')
parser.set_defaults(nesterov=False)
parser.add_argument('--optimizer', default='sgd', type=str, help='Currently only support SGD')
parser.add_argument('--lr_patience', default=10, type=int, help='Patience of LR scheduler. See documentation of ReduceLROnPlateau.')
parser.add_argument('--batch_size', default=128, type=int, help='Batch Size')
parser.add_argument('--n_epochs', default=250, type=int, help='Number of total epochs to run')
parser.add_argument('--begin_epoch', default=1, type=int, help='Training begins at this epoch. Previous trained model indicated by resume_path is loaded.')
parser.add_argument('--n_val_samples', default=3, type=int, help='Number of validation samples for each activity')
parser.add_argument('--resume_path', default='', type=str, help='Save data (.pth) of previous training')
parser.add_argument('--pretrain_path', default='', type=str, help='Pretrained model (.pth)')
parser.add_argument('--ft_portion', default='complete', type=str, help='The portion of the model to apply fine tuning, either complete or last_layer')
parser.add_argument('--no_train', action='store_true', help='If true, training is not performed.')
parser.set_defaults(no_train=False)
parser.add_argument('--no_val', action='store_true', help='If true, validation is not performed.')
parser.set_defaults(no_val=False)
parser.add_argument('--test', action='store_true', help='If true, test is performed.')
parser.set_defaults(test=False)
parser.add_argument('--test_subset', default='val', type=str, help='Used subset in test (val | test)')
parser.add_argument('--scale_in_test', default=1.0, type=float, help='Spatial scale in test')
parser.add_argument('--crop_position_in_test', default='c', type=str, help='Cropping method (c | tl | tr | bl | br) in test')
parser.add_argument('--no_softmax_in_test', action='store_true', help='If true, output for each clip is not normalized using softmax.')
parser.set_defaults(no_softmax_in_test=False)
parser.add_argument('--no_cuda', action='store_true', help='If true, cuda is not used.')
parser.set_defaults(no_cuda=False)
parser.add_argument('--n_threads', default=16, type=int, help='Number of threads for multi-thread loading')
parser.add_argument('--checkpoint', default=10, type=int, help='Trained model is saved at every this epochs.')
parser.add_argument('--no_hflip', action='store_true', help='If true holizontal flipping is not performed.')
parser.set_defaults(no_hflip=False)
parser.add_argument('--norm_value', default=1, type=int, help='If 1, range of inputs is [0-255]. If 255, range of inputs is [0-1].')
parser.add_argument('--model', default='resnet', type=str, help='(resnet | preresnet | wideresnet | resnext | densenet | ')
parser.add_argument('--version', default=1.1, type=float, help='Version of the model')
parser.add_argument('--model_depth', default=18, type=int, help='Depth of resnet (10 | 18 | 34 | 50 | 101)')
parser.add_argument('--resnet_shortcut', default='B', type=str, help='Shortcut type of resnet (A | B)')
parser.add_argument('--wide_resnet_k', default=2, type=int, help='Wide resnet k')
parser.add_argument('--resnext_cardinality', default=32, type=int, help='ResNeXt cardinality')
parser.add_argument('--groups', default=3, type=int, help='The number of groups at group convolutions at conv layers')
parser.add_argument('--width_mult', default=1.0, type=float, help='The applied width multiplier to scale number of filters')
parser.add_argument('--manual_seed', default=1, type=int, help='Manually set random seed')
parser.add_argument('--train_validate', action='store_true', help='If true, test is performed.')
parser.set_defaults(train_validate=False)
args = parser.parse_args()
return args
def parse_opts_online():
# Real-time test arguments with detector and classifier architecture
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', default='/root/data/ActivityNet', type=str, help='Root directory path of data')
parser.add_argument('--video_path', default='video_kinetics_jpg', type=str, help='Directory path of Videos')
parser.add_argument('--video', default='data2/EgoGesture/videos/Subject02/Scene1/Color/rgb1.avi', type=str, help='Directory path of test Videos')
parser.add_argument('--whole_path', default='video_kinetics_jpg', type=str, help='The whole path of Videos')
parser.add_argument('--annotation_path', default='kinetics.json', type=str, help='Annotation file path')
parser.add_argument('--result_path', default='results', type=str, help='Result directory path')
parser.add_argument('--store_name', default='model', type=str, help='Name to store checkpoints')
parser.add_argument('--modality', default='RGB', type=str, help='Modality of input data. RGB, Flow or RGBFlow')
parser.add_argument('--modality_det', default='RGB', type=str, help='Modality of input data. RGB, Flow or RGBFlow')
parser.add_argument('--modality_clf', default='RGB', type=str, help='Modality of input data. RGB, Flow or RGBFlow')
parser.add_argument('--dataset', default='kinetics', type=str,
help='Used dataset (activitynet | kinetics | ucf101 | hmdb51)')
parser.add_argument('--n_classes_det', default=400, type=int,
help='Number of classes (activitynet: 200, kinetics: 400, ucf101: 101, hmdb51: 51)')
parser.add_argument('--n_finetune_classes_det', default=400, type=int,
help='Number of classes for fine-tuning. n_classes is set to the number when pretraining.')
parser.add_argument('--n_classes_clf', default=400, type=int,
help='Number of classes (activitynet: 200, kinetics: 400, ucf101: 101, hmdb51: 51)')
parser.add_argument('--n_finetune_classes_clf', default=400, type=int,
help='Number of classes for fine-tuning. n_classes is set to the number when pretraining.')
parser.add_argument('--n_classes', default=400, type=int,
help='Number of classes (activitynet: 200, kinetics: 400, ucf101: 101, hmdb51: 51)')
parser.add_argument('--n_finetune_classes', default=400, type=int,
help='Number of classes for fine-tuning. n_classes is set to the number when pretraining.')
parser.add_argument('--sample_size', default=112, type=int, help='Height and width of inputs')
parser.add_argument('--sample_duration_det', default=16, type=int, help='Temporal duration of inputs')
parser.add_argument('--sample_duration_clf', default=16, type=int, help='Temporal duration of inputs')
parser.add_argument('--sample_duration', default=16, type=int, help='Temporal duration of inputs')
parser.add_argument('--initial_scale', default=1.0, type=float, help='Initial scale for multiscale cropping')
parser.add_argument('--n_scales', default=5, type=int, help='Number of scales for multiscale cropping')
parser.add_argument('--scale_step', default=0.84089641525, type=float, help='Scale step for multiscale cropping')
parser.add_argument('--train_crop', default='corner', type=str,
help='Spatial cropping method in training. random is uniform. corner is selection from 4 corners and 1 center. (random | corner | center)')
parser.add_argument('--learning_rate', default=0.1, type=float,
help='Initial learning rate (divided by 10 while training by lr scheduler)')
parser.add_argument('--lr_steps', default=[10, 20, 30, 40, 100], type=float, nargs="+", metavar='LRSteps',
help='epochs to decay learning rate by 10')
parser.add_argument('--momentum', default=0.9, type=float, help='Momentum')
parser.add_argument('--dampening', default=0.9, type=float, help='dampening of SGD')
parser.add_argument('--weight_decay', default=1e-3, type=float, help='Weight Decay')
parser.add_argument('--mean_dataset', default='activitynet', type=str,
help='dataset for mean values of mean subtraction (activitynet | kinetics)')
parser.add_argument('--no_mean_norm', action='store_true', help='If true, inputs are not normalized by mean.')
parser.set_defaults(no_mean_norm=False)
parser.add_argument('--std_norm', action='store_true', help='If true, inputs are normalized by standard deviation.')
parser.set_defaults(std_norm=False)
parser.add_argument('--nesterov', action='store_true', help='Nesterov momentum')
parser.set_defaults(nesterov=False)
parser.add_argument('--optimizer', default='sgd', type=str, help='Currently only support SGD')
parser.add_argument('--lr_patience', default=10, type=int,
help='Patience of LR scheduler. See documentation of ReduceLROnPlateau.')
parser.add_argument('--batch_size', default=128, type=int, help='Batch Size')
parser.add_argument('--n_epochs', default=200, type=int, help='Number of total epochs to run')
parser.add_argument('--begin_epoch', default=1, type=int,
help='Training begins at this epoch. Previous trained model indicated by resume_path is loaded.')
parser.add_argument('--n_val_samples', default=3, type=int, help='Number of validation samples for each activity')
parser.add_argument('--resume_path_det', default='', type=str, help='Save data (.pth) of previous training')
parser.add_argument('--resume_path_clf', default='', type=str, help='Save data (.pth) of previous training')
parser.add_argument('--resume_path', default='', type=str, help='Save data (.pth) of previous training')
parser.add_argument('--pretrain_path_det', default='', type=str, help='Pretrained model (.pth)')
parser.add_argument('--pretrain_path_clf', default='', type=str, help='Pretrained model (.pth)')
parser.add_argument('--pretrain_path', default='', type=str, help='Pretrained model (.pth)')
parser.add_argument('--ft_begin_index', default=0, type=int, help='Begin block index of fine-tuning')
parser.add_argument('--no_train', action='store_true', help='If true, training is not performed.')
parser.set_defaults(no_train=False)
parser.add_argument('--no_val', action='store_true', help='If true, validation is not performed.')
parser.set_defaults(no_val=False)
parser.add_argument('--test', action='store_true', help='If true, test is performed.')
parser.set_defaults(test=True)
parser.add_argument('--test_subset', default='val', type=str, help='Used subset in test (val | test)')
parser.add_argument('--scale_in_test', default=1.0, type=float, help='Spatial scale in test')
parser.add_argument('--crop_position_in_test', default='c', type=str,
help='Cropping method (c | tl | tr | bl | br) in test')
parser.add_argument('--no_softmax_in_test', action='store_true',
help='If true, output for each clip is not normalized using softmax.')
parser.set_defaults(no_softmax_in_test=False)
parser.add_argument('--no_cuda', action='store_true', help='If true, cuda is not used.')
parser.set_defaults(no_cuda=False)
parser.add_argument('--n_threads', default=4, type=int, help='Number of threads for multi-thread loading')
parser.add_argument('--checkpoint', default=10, type=int, help='Trained model is saved at every this epochs.')
parser.add_argument('--no_hflip', action='store_true', help='If true holizontal flipping is not performed.')
parser.set_defaults(no_hflip=False)
parser.add_argument('--norm_value', default=1, type=int,
help='If 1, range of inputs is [0-255]. If 255, range of inputs is [0-1].')
parser.add_argument('--model_det', default='resnet', type=str,
help='(resnet | preresnet | wideresnet | resnext | densenet | ')
parser.add_argument('--model_depth_det', default=18, type=int, help='Depth of resnet (10 | 18 | 34 | 50 | 101)')
parser.add_argument('--resnet_shortcut_det', default='B', type=str, help='Shortcut type of resnet (A | B)')
parser.add_argument('--wide_resnet_k_det', default=2, type=int, help='Wide resnet k')
parser.add_argument('--resnext_cardinality_det', default=32, type=int, help='ResNeXt cardinality')
parser.add_argument('--model', default='resnet', type=str,
help='(resnet | preresnet | wideresnet | resnext | densenet | ')
parser.add_argument('--model_depth', default=18, type=int, help='Depth of resnet (10 | 18 | 34 | 50 | 101)')
parser.add_argument('--resnet_shortcut', default='B', type=str, help='Shortcut type of resnet (A | B)')
parser.add_argument('--wide_resnet_k', default=2, type=int, help='Wide resnet k')
parser.add_argument('--resnext_cardinality', default=32, type=int, help='ResNeXt cardinality')
parser.add_argument('--model_clf', default='resnet', type=str,
help='(resnet | preresnet | wideresnet | resnext | densenet | ')
parser.add_argument('--model_depth_clf', default=18, type=int, help='Depth of resnet (10 | 18 | 34 | 50 | 101)')
parser.add_argument('--resnet_shortcut_clf', default='B', type=str, help='Shortcut type of resnet (A | B)')
parser.add_argument('--wide_resnet_k_clf', default=2, type=int, help='Wide resnet k')
parser.add_argument('--resnext_cardinality_clf', default=32, type=int, help='ResNeXt cardinality')
parser.add_argument('--width_mult', default=1.0, type=float, help='The applied width multiplier to scale number of filters')
parser.add_argument('--width_mult_det', default=1.0, type=float, help='The applied width multiplier to scale number of filters')
parser.add_argument('--width_mult_clf', default=1.0, type=float, help='The applied width multiplier to scale number of filters')
parser.add_argument('--manual_seed', default=1, type=int, help='Manually set random seed')
parser.add_argument('--det_strategy', default='raw', type=str, help='Detector filter (raw | median | ma | ewma)')
parser.add_argument('--det_queue_size', default=1, type=int, help='Detector queue size')
parser.add_argument('--det_counter', default=1, type=float, help='Number of consequtive detection')
parser.add_argument('--clf_strategy', default='raw', type=str, help='Classifier filter (raw | median | ma | ewma)')
parser.add_argument('--clf_queue_size', default=1, type=int, help='Classifier queue size')
parser.add_argument('--clf_threshold_pre', default=1, type=float, help='Cumulative sum threshold to prepredict')
parser.add_argument('--clf_threshold_final', default=1, type=float,
help='Cumulative sum threshold to predict at the end')
parser.add_argument('--stride_len', default=1, type=int, help='Stride Lenght of video loader window')
parser.add_argument('--ft_portion', default='complete', type=str, help='The portion of the model to apply fine tuning, either complete or last_layer')
parser.add_argument('--groups', default=3, type=int, help='The number of groups at group convolutions at conv layers')
parser.add_argument('--downsample', default=1, type=int, help='Downsampling. Selecting 1 frame out of N')
args = parser.parse_args()
return args