-
Notifications
You must be signed in to change notification settings - Fork 169
/
Copy pathonline_test.py
executable file
·370 lines (309 loc) · 14.8 KB
/
online_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import os
import glob
import json
import pandas as pd
import csv
import torch
from torch.autograd import Variable
from torch.nn import functional as F
from opts import parse_opts_online
from model import generate_model
from mean import get_mean, get_std
from spatial_transforms import *
from temporal_transforms import *
from target_transforms import ClassLabel
from dataset import get_online_data
from utils import AverageMeter, LevenshteinDistance, Queue
import pdb
import numpy as np
import datetime
def weighting_func(x):
return (1 / (1 + np.exp(-0.2 * (x - 9))))
opt = parse_opts_online()
def load_models(opt):
opt.resume_path = opt.resume_path_det
opt.pretrain_path = opt.pretrain_path_det
opt.sample_duration = opt.sample_duration_det
opt.model = opt.model_det
opt.model_depth = opt.model_depth_det
opt.width_mult = opt.width_mult_det
opt.modality = opt.modality_det
opt.resnet_shortcut = opt.resnet_shortcut_det
opt.n_classes = opt.n_classes_det
opt.n_finetune_classes = opt.n_finetune_classes_det
if opt.root_path != '':
opt.video_path = os.path.join(opt.root_path, opt.video_path)
opt.annotation_path = os.path.join(opt.root_path, opt.annotation_path)
opt.result_path = os.path.join(opt.root_path, opt.result_path)
if opt.resume_path:
opt.resume_path = os.path.join(opt.root_path, opt.resume_path)
if opt.pretrain_path:
opt.pretrain_path = os.path.join(opt.root_path, opt.pretrain_path)
opt.scales = [opt.initial_scale]
for i in range(1, opt.n_scales):
opt.scales.append(opt.scales[-1] * opt.scale_step)
opt.arch = '{}'.format(opt.model)
opt.mean = get_mean(opt.norm_value)
opt.std = get_std(opt.norm_value)
print(opt)
with open(os.path.join(opt.result_path, 'opts_det.json'), 'w') as opt_file:
json.dump(vars(opt), opt_file)
torch.manual_seed(opt.manual_seed)
detector, parameters = generate_model(opt)
if opt.resume_path:
opt.resume_path = os.path.join(opt.root_path, opt.resume_path)
print('loading checkpoint {}'.format(opt.resume_path))
checkpoint = torch.load(opt.resume_path)
#assert opt.arch == checkpoint['arch']
detector.load_state_dict(checkpoint['state_dict'])
print('Model 1 \n', detector)
pytorch_total_params = sum(p.numel() for p in detector.parameters() if
p.requires_grad)
print("Total number of trainable parameters: ", pytorch_total_params)
opt.resume_path = opt.resume_path_clf
opt.pretrain_path = opt.pretrain_path_clf
opt.sample_duration = opt.sample_duration_clf
opt.model = opt.model_clf
opt.model_depth = opt.model_depth_clf
opt.width_mult = opt.width_mult_clf
opt.modality = opt.modality_clf
opt.resnet_shortcut = opt.resnet_shortcut_clf
opt.n_classes = opt.n_classes_clf
opt.n_finetune_classes = opt.n_finetune_classes_clf
if opt.root_path != '':
opt.video_path = os.path.join(opt.root_path, opt.video_path)
opt.annotation_path = os.path.join(opt.root_path, opt.annotation_path)
opt.result_path = os.path.join(opt.root_path, opt.result_path)
if opt.resume_path:
opt.resume_path = os.path.join(opt.root_path, opt.resume_path)
if opt.pretrain_path:
opt.pretrain_path = os.path.join(opt.root_path, opt.pretrain_path)
opt.scales = [opt.initial_scale]
for i in range(1, opt.n_scales):
opt.scales.append(opt.scales[-1] * opt.scale_step)
opt.arch = '{}'.format(opt.model)
opt.mean = get_mean(opt.norm_value)
opt.std = get_std(opt.norm_value)
print(opt)
with open(os.path.join(opt.result_path, 'opts_clf.json'), 'w') as opt_file:
json.dump(vars(opt), opt_file)
torch.manual_seed(opt.manual_seed)
classifier, parameters = generate_model(opt)
if opt.resume_path:
print('loading checkpoint {}'.format(opt.resume_path))
checkpoint = torch.load(opt.resume_path)
# assert opt.arch == checkpoint['arch']
classifier.load_state_dict(checkpoint['state_dict'])
print('Model 2 \n', classifier)
pytorch_total_params = sum(p.numel() for p in classifier.parameters() if
p.requires_grad)
print("Total number of trainable parameters: ", pytorch_total_params)
return detector, classifier
detector, classifier = load_models(opt)
if opt.no_mean_norm and not opt.std_norm:
norm_method = Normalize([0, 0, 0], [1, 1, 1])
elif not opt.std_norm:
norm_method = Normalize(opt.mean, [1, 1, 1])
else:
norm_method = Normalize(opt.mean, opt.std)
spatial_transform = Compose([
Scale(112),
CenterCrop(112),
ToTensor(opt.norm_value), norm_method
])
target_transform = ClassLabel()
## Get list of videos to test
if opt.dataset == 'egogesture':
subject_list = ['Subject{:02d}'.format(i) for i in [2, 9, 11, 14, 18, 19, 28, 31, 41, 47]]
test_paths = []
for subject in subject_list:
for x in glob.glob(os.path.join(opt.video_path, subject, '*/*/rgb*')):
test_paths.append(x)
elif opt.dataset == 'nvgesture':
df = pd.read_csv(os.path.join(opt.video_path, 'nvgesture_test_correct_cvpr2016_v2.lst'), delimiter=' ', header=None)
test_paths = []
for x in df[0].values:
test_paths.append(os.path.join(opt.video_path, x.replace('path:', ''), 'sk_color_all'))
print('Start Evaluation')
detector.eval()
classifier.eval()
levenshtein_accuracies = AverageMeter()
videoidx = 0
for path in test_paths[:]:
if opt.dataset == 'egogesture':
opt.whole_path = os.path.join(*path.rsplit(os.sep, 4)[1:])
elif opt.dataset == 'nvgesture':
opt.whole_path = os.path.join(*path.rsplit(os.sep, 5)[1:])
videoidx += 1
active_index = 0
passive_count = 0
active = False
prev_active = False
finished_prediction = None
pre_predict = False
cum_sum = np.zeros(opt.n_classes_clf, )
clf_selected_queue = np.zeros(opt.n_classes_clf, )
det_selected_queue = np.zeros(opt.n_classes_det, )
myqueue_det = Queue(opt.det_queue_size, n_classes=opt.n_classes_det)
myqueue_clf = Queue(opt.clf_queue_size, n_classes=opt.n_classes_clf)
print('[{}/{}]============'.format(videoidx, len(test_paths)))
print(path)
opt.sample_duration = max(opt.sample_duration_clf, opt.sample_duration_det)
temporal_transform = TemporalRandomCrop(opt.sample_duration, opt.downsample)
test_data = get_online_data(
opt, spatial_transform, None, target_transform)
test_loader = torch.utils.data.DataLoader(
test_data,
batch_size=opt.batch_size,
shuffle=False,
num_workers=opt.n_threads,
pin_memory=True)
results = []
prev_best1 = opt.n_classes_clf
dataset_len = len(test_loader.dataset)
for i, (inputs, targets) in enumerate(test_loader):
if not opt.no_cuda:
targets = targets.cuda()
ground_truth_array = np.zeros(opt.n_classes_clf + 1, )
with torch.no_grad():
inputs = Variable(inputs)
targets = Variable(targets)
if opt.modality_det == 'RGB':
inputs_det = inputs[:, :-1, -opt.sample_duration_det:, :, :]
elif opt.modality_det == 'Depth':
inputs_det = inputs[:, -1, -opt.sample_duration_det:, :, :].unsqueeze(1)
elif opt.modality_det == 'RGB-D':
inputs_det = inputs[:, :, -opt.sample_duration_det:, :, :]
outputs_det = detector(inputs_det)
outputs_det = F.softmax(outputs_det, dim=1)
outputs_det = outputs_det.cpu().numpy()[0].reshape(-1, )
# enqueue the probabilities to the detector queue
myqueue_det.enqueue(outputs_det.tolist())
if opt.det_strategy == 'raw':
det_selected_queue = outputs_det
elif opt.det_strategy == 'median':
det_selected_queue = myqueue_det.median
elif opt.det_strategy == 'ma':
det_selected_queue = myqueue_det.ma
elif opt.det_strategy == 'ewma':
det_selected_queue = myqueue_det.ewma
prediction_det = np.argmax(det_selected_queue)
prob_det = det_selected_queue[prediction_det]
#### State of the detector is checked here as detector act as a switch for the classifier
if prediction_det == 1:
if opt.modality_clf == 'RGB':
inputs_clf = inputs[:, :-1, :, :, :]
elif opt.modality_clf == 'Depth':
inputs_clf = inputs[:, -1, :, :, :].unsqueeze(1)
elif opt.modality_clf == 'RGB-D':
inputs_clf = inputs[:, :, :, :, :]
inputs_clf = torch.Tensor(inputs_clf.numpy()[:,:,::2,:,:])
outputs_clf = classifier(inputs_clf)
outputs_clf = F.softmax(outputs_clf, dim=1)
outputs_clf = outputs_clf.cpu().numpy()[0].reshape(-1, )
# Push the probabilities to queue
myqueue_clf.enqueue(outputs_clf.tolist())
passive_count = 0
if opt.clf_strategy == 'raw':
clf_selected_queue = outputs_clf
elif opt.clf_strategy == 'median':
clf_selected_queue = myqueue_clf.median
elif opt.clf_strategy == 'ma':
clf_selected_queue = myqueue_clf.ma
elif opt.clf_strategy == 'ewma':
clf_selected_queue = myqueue_clf.ewma
else:
outputs_clf = np.zeros(opt.n_classes_clf, )
# Push the probabilities to queue
myqueue_clf.enqueue(outputs_clf.tolist())
passive_count += 1
if passive_count >= opt.det_counter or i == (dataset_len -2):
active = False
else:
active = True
# one of the following line need to be commented !!!!
if active:
active_index += 1
cum_sum = ((cum_sum * (active_index - 1)) + (
weighting_func(active_index) * clf_selected_queue)) / active_index # Weighted Aproach
# cum_sum = ((cum_sum * (x-1)) + (1.0 * clf_selected_queue))/x #Not Weighting Aproach
best2, best1 = tuple(cum_sum.argsort()[-2:][::1])
if float(cum_sum[best1] - cum_sum[best2]) > opt.clf_threshold_pre:
finished_prediction = True
pre_predict = True
else:
active_index = 0
if active == False and prev_active == True:
finished_prediction = True
elif active == True and prev_active == False:
finished_prediction = False
if finished_prediction == True:
best2, best1 = tuple(cum_sum.argsort()[-2:][::1])
if cum_sum[best1] > opt.clf_threshold_final:
if pre_predict == True:
if best1 != prev_best1:
if cum_sum[best1] > opt.clf_threshold_final:
results.append(((i * opt.stride_len) + opt.sample_duration_clf, best1))
print('Early Detected - class : {} with prob : {} at frame {}'.format(best1, cum_sum[best1],
(
i * opt.stride_len) + opt.sample_duration_clf))
else:
if cum_sum[best1] > opt.clf_threshold_final:
if best1 == prev_best1:
if cum_sum[best1] > 5:
results.append(((i * opt.stride_len) + opt.sample_duration_clf, best1))
print('Late Detected - class : {} with prob : {} at frame {}'.format(best1,
cum_sum[best1], (
i * opt.stride_len) + opt.sample_duration_clf))
else:
results.append(((i * opt.stride_len) + opt.sample_duration_clf, best1))
print('Late Detected - class : {} with prob : {} at frame {}'.format(best1, cum_sum[best1],
(
i * opt.stride_len) + opt.sample_duration_clf))
finished_prediction = False
prev_best1 = best1
cum_sum = np.zeros(opt.n_classes_clf, )
if active == False and prev_active == True:
pre_predict = False
prev_active = active
if opt.dataset == 'egogesture':
target_csv_path = os.path.join(opt.video_path,
'labels-final-revised1',
opt.whole_path.rsplit(os.sep, 2)[0],
'Group' + opt.whole_path[-1] + '.csv').replace('Subject', 'subject')
true_classes = []
with open(target_csv_path) as csvfile:
readCSV = csv.reader(csvfile, delimiter=',')
for row in readCSV:
true_classes.append(int(row[0]) - 1)
elif opt.dataset == 'nvgesture':
true_classes = []
with open('./annotation_nvGesture/vallistall.txt') as csvfile:
readCSV = csv.reader(csvfile, delimiter=' ')
for row in readCSV:
if row[0] == opt.whole_path:
if row[1] != '26':
true_classes.append(int(row[1]) - 1)
if len(results) != 0:
predicted = np.array(results)[:, 1]
else:
predicted = []
true_classes = np.array(true_classes)
levenshtein_distance = LevenshteinDistance(true_classes, predicted)
levenshtein_accuracy = 1 - (levenshtein_distance / len(true_classes))
if levenshtein_distance < 0: # Distance cannot be less than 0
levenshtein_accuracies.update(0, len(true_classes))
else:
levenshtein_accuracies.update(levenshtein_accuracy, len(true_classes))
print('predicted classes: \t', predicted)
print('True classes :\t\t', true_classes)
print('Levenshtein Accuracy = {} ({})'.format(levenshtein_accuracies.val, levenshtein_accuracies.avg))
print('Average Levenshtein Accuracy= {}'.format(levenshtein_accuracies.avg))
print('-----Evaluation is finished------')
with open("./results/online-results.log", "a") as myfile:
myfile.write("{}, {}, {}, {}, {}, {}".format(datetime.datetime.now(),
opt.resume_path_clf,
opt.model_clf,
opt.width_mult_clf,
opt.modality_clf,
levenshtein_accuracies.avg))