-
Notifications
You must be signed in to change notification settings - Fork 169
/
offline_test.py
229 lines (187 loc) · 7.12 KB
/
offline_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import argparse
import time
import os
import sys
import json
import shutil
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import itertools
import torch
from torch.autograd import Variable
from sklearn.metrics import confusion_matrix
from torch.nn import functional as F
from opts import parse_opts
from model import generate_model
from mean import get_mean, get_std
from spatial_transforms import *
from temporal_transforms import *
from target_transforms import ClassLabel, VideoID
from target_transforms import Compose as TargetCompose
from dataset import get_training_set, get_validation_set, get_test_set, get_online_data
from utils import Logger
from train import train_epoch
from validation import val_epoch
import test
from utils import AverageMeter, calculate_precision, calculate_recall
import pdb
from sklearn.metrics import confusion_matrix
def plot_cm(cm, classes, normalize = True):
import seaborn as sns
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
ax= plt.subplot()
sns.heatmap(cm, annot=False, ax = ax); #annot=True to annotate cells
# labels, title and ticks
ax.set_xlabel('Predicted labels');ax.set_ylabel('True labels');
plt.xticks(rotation='vertical')
plt.yticks(rotation='horizontal')
def calculate_accuracy(outputs, targets, topk=(1,)):
maxk = max(topk)
batch_size = targets.size(0)
_, pred = outputs.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(targets.view(1, -1).expand_as(pred))
ret = []
for k in topk:
correct_k = correct[:k].float().sum().item()
ret.append(correct_k / batch_size)
return ret
opt = parse_opts_offline()
if opt.root_path != '':
opt.video_path = os.path.join(opt.root_path, opt.video_path)
opt.annotation_path = os.path.join(opt.root_path, opt.annotation_path)
opt.result_path = os.path.join(opt.root_path, opt.result_path)
if opt.resume_path:
opt.resume_path = os.path.join(opt.root_path, opt.resume_path)
if opt.pretrain_path:
opt.pretrain_path = os.path.join(opt.root_path, opt.pretrain_path)
opt.scales = [opt.initial_scale]
for i in range(1, opt.n_scales):
opt.scales.append(opt.scales[-1] * opt.scale_step)
opt.arch = '{}-{}'.format(opt.model, opt.model_depth)
opt.mean = get_mean(opt.norm_value)
opt.std = get_std(opt.norm_value)
print(opt)
with open(os.path.join(opt.result_path, 'opts.json'), 'w') as opt_file:
json.dump(vars(opt), opt_file)
torch.manual_seed(opt.manual_seed)
model, parameters = generate_model(opt)
print(model)
pytorch_total_params = sum(p.numel() for p in model.parameters() if
p.requires_grad)
print("Total number of trainable parameters: ", pytorch_total_params)
if opt.no_mean_norm and not opt.std_norm:
norm_method = Normalize([0, 0, 0], [1, 1, 1])
elif not opt.std_norm:
norm_method = Normalize(opt.mean, [1, 1, 1])
else:
norm_method = Normalize(opt.mean, opt.std)
spatial_transform = Compose([
#Scale(opt.sample_size),
Scale(112),
CenterCrop(112),
ToTensor(opt.norm_value), norm_method
])
temporal_transform = TemporalCenterCrop(opt.sample_duration)
#temporal_transform = TemporalBeginCrop(opt.sample_duration)
#temporal_transform = TemporalEndCrop(opt.sample_duration)
target_transform = ClassLabel()
test_data = get_test_set(
opt, spatial_transform, temporal_transform, target_transform)
test_loader = torch.utils.data.DataLoader(
test_data,
batch_size=opt.batch_size,
shuffle=False,
num_workers=opt.n_threads,
pin_memory=True)
test_logger = Logger(os.path.join(opt.result_path, 'test.log'),
[ 'top1', 'top5', 'precision', 'recall'])
if opt.resume_path:
print('loading checkpoint {}'.format(opt.resume_path))
checkpoint = torch.load(opt.resume_path)
assert opt.arch == checkpoint['arch']
opt.begin_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
#test.test(test_loader, model, opt, test_data.class_names)
recorder = []
print('run')
model.eval()
batch_time = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
precisions = AverageMeter() #
recalls = AverageMeter()
y_true = []
y_pred = []
end_time = time.time()
for i, (inputs, targets) in enumerate(test_loader):
if not opt.no_cuda:
targets = targets.cuda(async=True)
#inputs = Variable(torch.squeeze(inputs), volatile=True)
with torch.no_grad():
inputs = Variable(inputs)
targets = Variable(targets)
outputs = model(inputs)
if not opt.no_softmax_in_test:
outputs = F.softmax(outputs)
recorder.append(outputs.data.cpu().numpy().copy())
y_true.extend(targets.cpu().numpy().tolist())
y_pred.extend(outputs.argmax(1).cpu().numpy().tolist())
#outputs = torch.unsqueeze(torch.mean(outputs, 0), 0)
#pdb.set_trace()
# print(outputs.shape, targets.shape)
if outputs.size(1) <= 4:
prec1= calculate_accuracy(outputs, targets, topk=(1,))
precision = calculate_precision(outputs, targets) #
recall = calculate_recall(outputs,targets)
top1.update(prec1[0], inputs.size(0))
precisions.update(precision, inputs.size(0))
recalls.update(recall,inputs.size(0))
batch_time.update(time.time() - end_time)
end_time = time.time()
print('[{0}/{1}]\t'
'Time {batch_time.val:.5f} ({batch_time.avg:.5f})\t'
'prec@1 {top1.avg:.5f} \t'
'precision {precision.val:.5f} ({precision.avg:.5f})\t'
'recall {recall.val:.5f} ({recall.avg:.5f})'.format(
i + 1,
len(test_loader),
batch_time=batch_time,
top1 =top1,
precision = precisions,
recall = recalls))
else:
prec1, prec5 = calculate_accuracy(outputs, targets, topk=(1,5))
precision = calculate_precision(outputs, targets) #
recall = calculate_recall(outputs,targets)
top1.update(prec1, inputs.size(0))
top5.update(prec5, inputs.size(0))
precisions.update(precision, inputs.size(0))
recalls.update(recall,inputs.size(0))
batch_time.update(time.time() - end_time)
end_time = time.time()
print('[{0}/{1}]\t'
'Time {batch_time.val:.5f} ({batch_time.avg:.5f})\t'
'prec@1 {top1.avg:.5f} prec@5 {top5.avg:.5f}\t'
'precision {precision.val:.5f} ({precision.avg:.5f})\t'
'recall {recall.val:.5f} ({recall.avg:.5f})'.format(
i + 1,
len(test_loader),
batch_time=batch_time,
top1 =top1,
top5=top5,
precision = precisions,
recall = recalls))
test_logger.log({
'top1': top1.avg,
'top5': top5.avg,
'precision':precisions.avg,
'recall':recalls.avg
})
print('-----Evaluation is finished------')
print('Overall Prec@1 {:.05f}% Prec@5 {:.05f}%'.format(top1.avg, top5.avg))