-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterface_GDA_fitting.py
486 lines (409 loc) · 24.4 KB
/
interface_GDA_fitting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import os
from datetime import datetime
import tkinter as tk
from tkinter import filedialog, messagebox
import numpy as np
from scipy.optimize import brentq, minimize
import matplotlib.pyplot as plt
from pltstyle import create_plots
def format_value(value):
return f"{value:.0f}" if value > 10 else f"{value:.2f}"
# Function to run the fitting process
def run_fitting(file_path, results_file_path, Kd_in_M, h0_in_M, g0_in_M, number_of_fit_trials, rmse_threshold_factor, r2_threshold, save_plots, display_plots, plots_dir, save_results, results_save_dir):
try:
# Load data from input file
data_lines = load_data(file_path)
if data_lines is None:
raise ValueError("Data loading failed.")
replicas = split_replicas(data_lines)
if replicas is None:
raise ValueError("Replica splitting failed.")
print(f"Number of replicas detected: {len(replicas)}")
# Initialize parameter ranges for fitting
I0_range = (0, None)
Id_range = (None, None)
Ihd_range = (None, None)
# Check and load boundaries from results file, if available
if results_file_path and os.path.exists(results_file_path):
try:
with open(results_file_path, 'r') as f:
lines = f.readlines()
# Extract Id prediction interval
id_prediction_line = next((line for line in lines if 'Id prediction interval' in line), None)
if id_prediction_line and 'not applicable' not in id_prediction_line:
Id_lower = float(id_prediction_line.split('[')[-1].split(',')[0].strip())
Id_upper = float(id_prediction_line.split(',')[-1].split(']')[0].strip())
else:
average_Id = float(next(line for line in lines if 'Average Id' in line).split('\t')[-1].strip())
Id_lower = 0.5 * average_Id
Id_upper = 2.0 * average_Id
# Extract I0 prediction interval
i0_prediction_line = next((line for line in lines if 'I0 prediction interval' in line), None)
if i0_prediction_line and 'not applicable' not in i0_prediction_line:
I0_lower = float(i0_prediction_line.split('[')[-1].split(',')[0].strip())
I0_upper = float(i0_prediction_line.split(',')[-1].split(']')[0].strip())
else:
average_I0 = float(next(line for line in lines if 'Average I0' in line).split('\t')[-1].strip())
I0_lower = 0.5 * average_I0
I0_upper = 2.0 * average_I0
except Exception as e:
print(f"Error parsing boundaries from the results file: {e}")
Id_lower, Id_upper = 1e3, 1e18
I0_lower, I0_upper = 0, None
else:
Id_lower, Id_upper = 1e3, 1e18
I0_lower, I0_upper = 0, None
# Convert bounds to µM⁻¹ for fitting
Id_lower /= 1e6
Id_upper /= 1e6
Ihd_lower = Ihd_range[0] / 1e6 if Ihd_range[0] is not None else 0.001
Ihd_upper = Ihd_range[1] / 1e6 if Ihd_range[1] is not None else 1e12
# Convert constants to µM
Kd = Kd_in_M / 1e6
h0 = h0_in_M * 1e6
g0 = g0_in_M * 1e6
figures = [] # List to store figures
# Process each replica for fitting
for replica_index, replica_data in enumerate(replicas, start=1):
d0_values = replica_data[:, 0] * 1e6
Signal_observed = replica_data[:, 1]
if len(d0_values) < 2:
print(f"Replica {replica_index} has insufficient data. Skipping.")
continue
# Update I0_upper if needed
I0_upper = np.min(Signal_observed) if I0_upper is None or np.isinf(I0_upper) else I0_upper
# Generate initial guesses for parameters
Ihd_guess_smaller = Signal_observed[0] < Signal_observed[-1]
initial_params_list = []
for _ in range(number_of_fit_trials):
I0_guess = np.random.uniform(I0_lower, I0_upper)
Kg_guess = 10 ** np.random.uniform(np.log10(Kd) - 5, np.log10(Kd) + 5)
if Ihd_guess_smaller:
Id_guess = 10 ** np.random.uniform(np.log10(Id_lower), np.log10(Id_upper))
Ihd_guess = Id_guess * np.random.uniform(0.1, 0.5)
else:
Ihd_guess = 10 ** np.random.uniform(np.log10(Ihd_lower), np.log10(Ihd_upper))
Id_guess = Ihd_guess * np.random.uniform(0.1, 0.5)
initial_params_list.append([I0_guess, Kg_guess, Id_guess, Ihd_guess])
# Fit parameters for replica using least-squares minimization
best_result, best_cost = None, np.inf
fit_results = []
for initial_params in initial_params_list:
result = minimize(lambda params: np.sum(residuals(params, d0_values, Signal_observed, Kd, h0, g0) ** 2),
initial_params, method='L-BFGS-B',
bounds=[(I0_lower, I0_upper), (1e-8, 1e8), (Id_lower, Id_upper), (Ihd_lower, Ihd_upper)])
Signal_computed = compute_signal(result.x, d0_values, Kd, h0, g0)
rmse, r_squared = calculate_fit_metrics(Signal_observed, Signal_computed)
fit_results.append((result.x, result.fun, rmse, r_squared))
if result.fun < best_cost:
best_cost = result.fun
best_result = result
# Filter fits by RMSE and R² thresholds
best_rmse = min(fit_rmse for _, _, fit_rmse, _ in fit_results)
rmse_threshold = best_rmse * rmse_threshold_factor
filtered_results = [
(params, fit_rmse, fit_r2) for params, _, fit_rmse, fit_r2 in fit_results
if fit_rmse <= rmse_threshold and fit_r2 >= r2_threshold
]
# Calculate median parameters if valid results are found
if filtered_results:
median_params = np.median(np.array([result[0] for result in filtered_results]), axis=0)
else:
print("Warning: No fits meet the filtering criteria.")
continue
# Compute metrics for median fit
Signal_computed = compute_signal(median_params, d0_values, Kd, h0, g0)
rmse, r_squared = calculate_fit_metrics(Signal_observed, Signal_computed)
# Plot observed vs. simulated fitting curve
fitting_curve_x, fitting_curve_y = [], []
for i in range(len(d0_values) - 1):
extra_points = np.linspace(d0_values[i], d0_values[i + 1], 21)
fitting_curve_x.extend(extra_points)
fitting_curve_y.extend(compute_signal(median_params, extra_points, Kd, h0, g0))
# TODO: implement a "dynamic" unit and scale for the x-axis
fig, ax = create_plots(x_label=r'$D_0$ $\rm{[\mu M]}$', y_label=r'Signal $\rm{[AU]}$')
ax.plot(d0_values, Signal_observed, 'o', label='Observed Signal')
ax.plot(fitting_curve_x, fitting_curve_y, '--', color='blue', alpha=0.6, label='Simulated Fitting Curve')
ax.set_title(f'Observed vs. Simulated Fitting Curve for Replica {replica_index}')
ax.legend(loc='upper left', bbox_to_anchor=(0.02, 0.98))
# Annotate plot with median parameter values and fit metrics
param_text = (f"$K_g$: {median_params[1] * 1e6:.2e} $M^{{-1}}$\n"
f"$I_0$: {median_params[0]:.2e}\n"
f"$I_d$: {median_params[2] * 1e6:.2e} $M^{{-1}}$\n"
f"$I_{{hd}}$: {median_params[3] * 1e6:.2e} $M^{{-1}}$\n"
f"$RMSE$: {format_value(rmse)}\n"
f"$R^2$: {r_squared:.3f}")
ax.annotate(param_text, xy=(0.8, 0.04), xycoords='axes fraction', fontsize=10,
ha='left', va='bottom', bbox=dict(boxstyle="round,pad=0.3", edgecolor="black", facecolor="lightgrey", alpha=0.5))
if save_plots:
plot_file = os.path.join(plots_dir, f"fit_plot_replica_{replica_index}.png")
fig.savefig(plot_file, bbox_inches='tight')
print(f"Plot saved to {plot_file}")
figures.append(fig) # Store the figure
# Save results to a file if save_results is True
if save_results:
replica_file = os.path.join(results_save_dir, f"fit_results_replica_{replica_index}.txt")
with open(replica_file, 'w') as f:
# Input section
f.write("Input:\n")
f.write(f"g0 (M): {g0_in_M:.6e}\n")
f.write(f"h0 (M): {h0_in_M:.6e}\n")
f.write(f"Kd (M^-1): {Kd_in_M:.6e}\n")
f.write(f"Id lower bound (signal/M): {Id_lower * 1e6:.3e}\n")
f.write(f"Id upper bound (signal/M): {Id_upper * 1e6:.3e}\n")
f.write(f"I0 lower bound: {I0_lower:.3e}\n")
f.write(f"I0 upper bound: {I0_upper:.3e}\n")
# Output - Median parameters
f.write("\nOutput:\nMedian parameters:\n")
f.write(f"Kg (M^-1): {median_params[1] * 1e6:.2e}\n")
f.write(f"I0: {median_params[0]:.2e}\n")
f.write(f"Id (signal/M): {median_params[2] * 1e6:.2e}\n")
f.write(f"Ihd (signal/M): {median_params[3] * 1e6:.2e}\n")
f.write(f"RMSE: {rmse:.3f}\n")
f.write(f"R²: {r_squared:.3f}\n")
# Acceptable Fit Parameters
f.write("\nAcceptable Fit Parameters:\n")
f.write("Kg (M^-1)\tI0\tId (signal/M)\tIhd (signal/M)\tRMSE\tR²\n")
for params, fit_rmse, fit_r2 in filtered_results:
f.write(f"{params[1] * 1e6:.2e}\t{params[0]:.2e}\t{params[2] * 1e6:.2e}\t{params[3] * 1e6:.2e}\t{fit_rmse:.3f}\t{fit_r2:.3f}\n")
# Calculate standard deviations for Kg, I0, Id, and Ihd if there are filtered results
if filtered_results:
Kg_values = [params[1] * 1e6 for params, _, _ in filtered_results]
I0_values = [params[0] for params, _, _ in filtered_results]
Id_values = [params[2] * 1e6 for params, _, _ in filtered_results]
Ihd_values = [params[3] * 1e6 for params, _, _ in filtered_results]
Kg_std = np.std(Kg_values)
I0_std = np.std(I0_values)
Id_std = np.std(Id_values)
Ihd_std = np.std(Ihd_values)
else:
Kg_std = I0_std = Id_std = Ihd_std = np.nan # Assign NaN if no filtered results
# Standard Deviations section
f.write("\nStandard Deviations:\n")
f.write(f"K_g Std Dev (M-1): {Kg_std:.2e}\n")
f.write(f"I_0 Std Dev: {I0_std:.2e}\n")
f.write(f"I_d Std Dev (signal/M): {Id_std:.2e}\n")
f.write(f"I_hd Std Dev (signal/M): {Ihd_std:.2e}\n")
# Original Data section
f.write("\nOriginal Data:\nConcentration do (M)\tSignal\n")
for d0, signal in zip(d0_values / 1e6, Signal_observed):
f.write(f"{d0:.6e}\t{signal:.6e}\n")
# Fitting Curve section
f.write("\nFitting Curve:\n")
f.write("Simulated Concentration (M)\tSimulated Signal\n")
for x_sim, y_sim in zip(np.array(fitting_curve_x) / 1e6, fitting_curve_y):
f.write(f"{x_sim:.6e}\t{y_sim:.6e}\n")
# Date of Export
f.write(f"\nDate of Export: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
print(f"Results for Replica {replica_index} saved to {replica_file}")
# Display all figures at once if display_plots is True
if display_plots:
plt.show()
except Exception as e:
messagebox.showerror("Error", str(e))
# Function to load data from file
def load_data(file_path):
try:
with open(file_path, 'r') as f:
return f.readlines()
except Exception as e:
print(f"Error loading file: {e}")
return None
# Function to split data into replicas
def split_replicas(data):
if data is None:
return None
replicas, current_replica = [], []
use_var_signal_split = any("var signal" in line.lower() for line in data)
for line in data:
if "var" in line.lower():
if current_replica:
replicas.append(np.array(current_replica))
current_replica = []
else:
try:
x, y = map(float, line.split())
if use_var_signal_split:
current_replica.append((x, y))
else:
if x == 0.0 and current_replica:
replicas.append(np.array(current_replica))
current_replica = []
current_replica.append((x, y))
except ValueError:
continue
if current_replica:
replicas.append(np.array(current_replica))
return replicas if replicas else None
# Function to compute signal
def compute_signal(params, d0_values, Kd, h0, g0):
I0, Kg, Id, Ihd = params
Signal_values = []
for d0 in d0_values:
try:
def equation_h(h):
denom_Kd = 1 + Kd * h
denom_Kg = 1 + Kg * h
h_d = (Kd * h * d0) / denom_Kd
h_g = (Kg * h * g0) / denom_Kg
return h + h_d + h_g - h0
h_sol = brentq(equation_h, 1e-20, h0, xtol=1e-14, maxiter=1000)
denom_Kd = 1 + Kd * h_sol
d_free = d0 / denom_Kd
h_d = Kd * h_sol * d_free
Signal = I0 + Id * d_free + Ihd * h_d
Signal_values.append(Signal)
except Exception:
Signal_values.append(np.nan)
return np.array(Signal_values)
# Function to compute residuals
def residuals(params, d0_values, Signal_observed, Kd, h0, g0):
Signal_computed = compute_signal(params, d0_values, Kd, h0, g0)
return np.nan_to_num(Signal_observed - Signal_computed, nan=1e6)
# Function to calculate fit metrics
def calculate_fit_metrics(Signal_observed, Signal_computed):
rmse = np.sqrt(np.nanmean((Signal_observed - Signal_computed) ** 2))
ss_res = np.nansum((Signal_observed - Signal_computed) ** 2)
ss_tot = np.nansum((Signal_observed - np.nanmean(Signal_observed)) ** 2)
r_squared = 1 - (ss_res / ss_tot) if ss_tot > 0 else np.nan
return rmse, r_squared
# Function to browse file
class GDAFittingApp:
def __init__(self, root):
self.root = root
self.root.title("GDA Fitting Interface")
self.info_label = None
# Variables
self.file_path_var = tk.StringVar()
self.use_results_file_var = tk.BooleanVar()
self.results_file_path_var = tk.StringVar()
self.Kd_var = tk.DoubleVar()
self.h0_var = tk.DoubleVar()
self.g0_var = tk.DoubleVar()
self.fit_trials_var = tk.IntVar()
self.rmse_threshold_var = tk.DoubleVar()
self.r2_threshold_var = tk.DoubleVar()
self.save_plots_var = tk.BooleanVar()
self.results_dir_var = tk.StringVar()
self.display_plots_var = tk.BooleanVar()
self.save_results_var = tk.BooleanVar() # New variable for saving results
self.results_save_dir_var = tk.StringVar() # New variable for results save directory
# Set default values
self.Kd_var.set(1.68e7) # Binding constant for h_d binding in M^-1
self.h0_var.set(4.3e-6) # Initial host concentration (M)
self.g0_var.set(6e-6) # Initial guest concentration (M)
self.fit_trials_var.set(200) # Number of fit trials
self.rmse_threshold_var.set(2) # RMSE threshold factor
self.r2_threshold_var.set(0.9) # R² threshold
self.display_plots_var.set(True)
# Padding
pad_x = 10
pad_y = 5
# Widgets
tk.Label(self.root, text="Input File Path:").grid(row=0, column=0, sticky=tk.W, padx=pad_x, pady=pad_y)
self.file_path_entry = tk.Entry(self.root, textvariable=self.file_path_var, width=40, justify='left')
self.file_path_entry.grid(row=0, column=1, padx=pad_x, pady=pad_y, sticky=tk.W)
tk.Button(self.root, text="Browse", command=self.browse_input_file).grid(row=0, column=2, padx=pad_x, pady=pad_y)
tk.Checkbutton(self.root, text="Read Boundaries from File: ", variable=self.use_results_file_var, command=self.update_use_results_widgets).grid(row=1, column=0, sticky=tk.W, padx=pad_x, pady=pad_y)
self.results_file_path_entry = tk.Entry(self.root, textvariable=self.results_file_path_var, width=40, justify='left', state=tk.DISABLED)
self.results_file_path_entry.grid(row=1, column=1, padx=pad_x, pady=pad_y, sticky=tk.W)
self.results_file_button = tk.Button(self.root, text="Browse", command=lambda: self.browse_file(self.results_file_path_entry), state=tk.DISABLED)
self.results_file_button.grid(row=1, column=2, padx=pad_x, pady=pad_y)
self.use_results_file_var.trace_add('write', lambda *args: self.update_use_results_widgets())
tk.Label(self.root, text=r"Kₐ (M⁻¹):").grid(row=3, column=0, sticky=tk.W, padx=pad_x, pady=pad_y)
self.Kd_entry = tk.Entry(self.root, textvariable=self.Kd_var, justify='left')
self.Kd_entry.grid(row=3, column=1, padx=pad_x, pady=pad_y, sticky=tk.W)
tk.Label(self.root, text="H₀ (M):").grid(row=4, column=0, sticky=tk.W, padx=pad_x, pady=pad_y)
self.h0_entry = tk.Entry(self.root, textvariable=self.h0_var, justify='left')
self.h0_entry.grid(row=4, column=1, padx=pad_x, pady=pad_y, sticky=tk.W)
tk.Label(self.root, text="G₀ (M):").grid(row=5, column=0, sticky=tk.W, padx=pad_x, pady=pad_y)
self.g0_entry = tk.Entry(self.root, textvariable=self.g0_var, justify='left')
self.g0_entry.grid(row=5, column=1, padx=pad_x, pady=pad_y, sticky=tk.W)
tk.Label(self.root, text="Number of Fit Trials:").grid(row=6, column=0, sticky=tk.W, padx=pad_x, pady=pad_y)
self.fit_trials_entry = tk.Entry(self.root, textvariable=self.fit_trials_var, justify='left')
self.fit_trials_entry.grid(row=6, column=1, padx=pad_x, pady=pad_y, sticky=tk.W)
tk.Label(self.root, text="RMSE Threshold Factor:").grid(row=7, column=0, sticky=tk.W, padx=pad_x, pady=pad_y)
self.rmse_threshold_entry = tk.Entry(self.root, textvariable=self.rmse_threshold_var, justify='left')
self.rmse_threshold_entry.grid(row=7, column=1, padx=pad_x, pady=pad_y, sticky=tk.W)
tk.Label(self.root, text="R² Threshold:").grid(row=8, column=0, sticky=tk.W, padx=pad_x, pady=pad_y)
self.r2_threshold_entry = tk.Entry(self.root, textvariable=self.r2_threshold_var, justify='left')
self.r2_threshold_entry.grid(row=8, column=1, padx=pad_x, pady=pad_y, sticky=tk.W)
tk.Checkbutton(self.root, text="Save Plots To", variable=self.save_plots_var, command=self.update_save_plot_widgets).grid(row=9, column=0, columnspan=1, sticky=tk.W, padx=pad_x, pady=pad_y)
self.results_dir_entry = tk.Entry(self.root, textvariable=self.results_dir_var, width=40, state=tk.DISABLED, justify='left')
self.results_dir_entry.grid(row=9, column=1, padx=pad_x, pady=pad_y, sticky=tk.W)
self.results_dir_button = tk.Button(self.root, text="Browse", command=lambda: self.browse_directory(self.results_dir_entry), state=tk.DISABLED)
self.results_dir_button.grid(row=9, column=2, padx=pad_x, pady=pad_y)
self.save_plots_var.trace_add('write', lambda *args: self.update_save_plot_widgets())
tk.Checkbutton(self.root, text="Save Results To", variable=self.save_results_var, command=self.update_save_results_widgets).grid(row=10, column=0, columnspan=1, sticky=tk.W, padx=pad_x, pady=pad_y)
self.results_save_dir_entry = tk.Entry(self.root, textvariable=self.results_save_dir_var, width=40, state=tk.DISABLED, justify='left')
self.results_save_dir_entry.grid(row=10, column=1, padx=pad_x, pady=pad_y, sticky=tk.W)
self.results_save_dir_button = tk.Button(self.root, text="Browse", command=lambda: self.browse_directory(self.results_save_dir_entry), state=tk.DISABLED)
self.results_save_dir_button.grid(row=10, column=2, padx=pad_x, pady=pad_y)
self.save_results_var.trace_add('write', lambda *args: self.update_save_results_widgets())
tk.Checkbutton(self.root, text="Display Plots", variable=self.display_plots_var).grid(row=11, column=0, columnspan=3, sticky=tk.W, padx=pad_x, pady=pad_y)
tk.Button(self.root, text="Run Fitting", command=self.run_fitting).grid(row=12, column=0, columnspan=3, pady=10, padx=pad_x)
def browse_input_file(self):
file_path = filedialog.askopenfilename()
if file_path:
self.file_path_var.set(file_path)
root_dir = os.path.dirname(file_path)
self.results_dir_var.set(root_dir)
self.results_save_dir_var.set(root_dir)
def browse_file(self, entry):
initial_dir = os.path.dirname(self.file_path_var.get()) if self.file_path_var.get() else os.getcwd()
file_path = filedialog.askopenfilename(initialdir=initial_dir)
if file_path:
entry.delete(0, tk.END)
entry.insert(0, file_path)
def browse_directory(self, entry):
initial_dir = os.path.dirname(self.file_path_var.get()) if self.file_path_var.get() else os.getcwd()
directory_path = filedialog.askdirectory(initialdir=initial_dir)
if directory_path:
entry.delete(0, tk.END)
entry.insert(0, directory_path)
def update_use_results_widgets(self):
state = tk.NORMAL if self.use_results_file_var.get() else tk.DISABLED
self.results_file_path_entry.config(state=state)
self.results_file_button.config(state=state)
def update_save_plot_widgets(self):
state = tk.NORMAL if self.save_plots_var.get() else tk.DISABLED
self.results_dir_entry.config(state=state)
self.results_dir_button.config(state=state)
def update_save_results_widgets(self):
state = tk.NORMAL if self.save_results_var.get() else tk.DISABLED
self.results_save_dir_entry.config(state=state)
self.results_save_dir_button.config(state=state)
def show_message(self, message, is_error=False):
if self.info_label:
self.info_label.destroy()
fg_color = 'red' if is_error else 'green'
self.info_label = tk.Label(self.root, text=message, fg=fg_color)
self.info_label.grid(row=13, column=0, columnspan=3, pady=10)
def run_fitting(self):
# Adjust the run_fitting function to access self variables and implement the fitting logic
try:
# Get user inputs
file_path = self.file_path_entry.get()
results_file_path = self.results_file_path_entry.get() if self.use_results_file_var.get() else None
Kd_in_M = self.Kd_var.get()
h0_in_M = self.h0_var.get()
g0_in_M = self.g0_var.get()
number_of_fit_trials = self.fit_trials_var.get()
rmse_threshold_factor = self.rmse_threshold_var.get()
r2_threshold = self.r2_threshold_var.get()
save_plots = self.save_plots_var.get()
display_plots = self.display_plots_var.get()
plots_dir = self.results_dir_entry.get()
save_results = self.save_results_var.get()
results_save_dir = self.results_save_dir_entry.get()
# Run the fitting process
run_fitting(file_path, results_file_path, Kd_in_M, h0_in_M, g0_in_M, number_of_fit_trials, rmse_threshold_factor, r2_threshold, save_plots, display_plots, plots_dir, save_results, results_save_dir)
self.show_message(f"Fitting completed!", is_error=False)
except Exception as e:
self.show_message(f"Error: {str(e)}", is_error=True)
# Main function to run the GUI
if __name__ == "__main__":
root = tk.Tk()
root.title("Automation Project")
GDAFittingApp(root)
root.mainloop()